
DEVELOPMENT OF A STRATEGIC MANAGEMENT PLAN FOR SUSTAINABLE USE OF SACRED MIJIKENDA KAYA FORESTS

Report on Biodiversity Survey of Kaya Kauma, 2019

E.N. Kioko, J.M. Jefwa, M. A. Nyangila and E. N. Mbua (EDITORS)

Recommended Citation:

Kioko, E.N, J.M. Jefwa, M. A. Nyangila and E. N. Mbua (eds.) (2019). *Biodiversity Survey of Kaya Kauma, Kilifi County*. National Museums of Kenya Technical Report to African World Heritage Fund Technical Nairobi, Kenya.

Contents

LIST OF FIGURES	5
LIST OF TABLES	7
ACKNOWLEDGEMENTS	8
EXECUTIVE SUMMARY	9
CHAPTER ONE:	11
GENERAL INTRODUCTION	11
1.1 Background	11
1.2 References	12
CHAPTER TWO	15
2.1 Summary	15
2.2 Introduction	16
2.3 Materials and Methods	17
2.4 Results	19
2.5 Discussions	25
2.6 Conclusion and Recommendations	27
2.7 References	27
2.8 Appendices	29
CHAPTER THREE:	
SURVEY OF BIRDS OF KAYA KAUMA FOREST, KILIFI COUNTY	
3.1 Summary	
3.2 Introduction	
3.3 Materials and methods	
3.4 Results	40
3.5 Discussion	
3.6 Conclusions and recommendations	46
3.7 References	47
3.8 Appendices	
CHAPTER FOUR:	57
SMALL MAMMAL SURVEY IN THE KAYA KAUMA FOREST, KILIFI COUNTY	57
4.1 Introduction	57
4.2. Material and methods	58
4.3 Results	60

4.4. Discussion and recommendations	64
4.5 References	66
CHAPTER FIVE:	68
AMPHIBIANS AND REPTILES SURVEY IN THE KAYA KAUMA FOREST, KILIFI COUNTY	68
5.1 Summary	68
5.2 Introduction	68
5.3 Materials and methods	69
5.4 Results and discussion	73
5.5 Recommendation and conclusion	
5.6 References	

LIST OF FIGURES

Figure 1 Map of Kenya showing Kilifi County and the invertebrate sampling points17
Figure 2 The Christmas butterfly (Lepidoptera) and Blister beetle (Coleoptera) foraging20
Figure 3 Species cumulative curve
Figure 4 Species composition and abundance in the sampled habitats
Figure 5 Species richness and abundance in the forest
Figure 6 Species richness and abundance in the Forest edge
Figure 7 Species richness and abundance in the farmlands25
Figure 8 Species accumulation curve as an estimate of bird species richness in two habitat types,
forest and forest edge, of Kaya Kauma40
Figure 9 Bird species abundance recorded in Kaya Kauma Forest from 24th - 28th November
2018
Figure 10 A forest specialist, Fischer's Turaco, Tauraco fischeri, is Near Threatened in the IUCN
redlist41
Figure 11 Bird species richness recorded in the forest and forest edge of Kaya Kauma42
Figure 12 Some of the forest dependent birds found in Kaya Kauma. The Yellow-bellied
Greenbul, Chlorocichla flaviventris centralis (left) and Eastern Bearded Scrub Robin
Cercotrichas quadrivirgata43
Figure 13 A forest generalist, Eastern Nicator, Nicator gularis, was frequent both in the forest and
the forest edge43
Figure 14 White-browed Coucal Centropus superciliosus and Dark-backed Weaver Ploceus
bicolor frequently visit forest edges and farmlands
Figure 15 One of the community elders Mzee Hillary with a bat at Kaya KaumaError
Bookmark not defined.59
Figure 16 The farmland in Jaribuni village where we trapped rodents. Error! Bookmark not
defined.60
Figure 17 The author and community member Mzee Hillary putting up mist net in front of Kaya
Kauma entrance foot path and setting traps at Jaribuni village. Error! Bookmark not
defined.61
Eisen 10 Carrier energy letter even for the size even line does therein the second even in and
Figure 18 Species accumulation curve for the six sampling days showing observed species and

Jacknife 1 species richness estimator. Error! Bookmark not defined.61

- Figure 20 Small mammal specimens skinned (a) and remains preserved as wet collection (b), deposited at the National Museums of Kenya, Nairobi.Error! Bookmark not defined.62
- Figure 22 Pitfall traps with transparent drift fence sampling techniqueError! Bookmark not defined.70
- Figure 23 Scherophrys gatturalis (24a), Ptychadena anchietae (24b), Female Phrynobatrachus acridoides (24c), Male P. acridoides (24d).....Error! Bookmark not defined.72
- Figure 24 Trachylepis planifrons (24a), Lygodactylus mombasicus (24b), Chamaeleo dilepis (24c), Hemidactylus plqtycephalus (24d), Heliobolus spekii (24e), Hemirrhagaris hilderbrandtia (24f), Psamophis biseriatus (24g) Error! Bookmark not defined.75

LIST OF TABLES

Table 1 Mammal species and the methods used to record their presence	63
Table 2 List of amphibians recorded during the three study sites	73

ACKNOWLEDGEMENTS

The research team would like to thank the African World Heritage Fund for the financial support that enabled this work to be undertaken. The management of the National Museums of Kenya (NMK) both at the headquarters in Nairobi and at the CFCU in Kilifi are highly acknowledged for all the logistical support provided during the planning and execution of this work. A special gratitude is extended to the Kaya Kauma Elders for granting the NMK researchers access to the Kaya Kauma forest. We extend our gratitude to the Kaya Kauma forest adjacent communities for giving us access to their farms during the field work. Mr. Lawrence Chiro, of the NMK CFCU Kilifi office is acknowledged for safe driving during the research work. We acknowledge the local community guides for their support and cooperation as we carried out the research work.

EXECUTIVE SUMMARY

Kaya Kauma is part of a mosaic of sacred forest fragments, along the Kenya coast that mesh into an ecosystem that harbor a rich diversity of flora and fauna. Kaya forests are protected through long standing local community rich and environmentally friendly traditions, taboos, beliefs and cultures. A 6-day biodiversity survey was undertaken in Kaya Kauma, from 21st -26th November 2018. The results for the five components as follows:

An invertebrate biodiversity survey was carried out using standard entomological methods and focused on the forest, forest edge and farmlands. The study recorded a total of 251 species and 1746 invertebrate individuals distributed across 18 Orders in Kaya Kauma forest, forest edge and surrounding farmlands. The forest recorded 162 species and 827 individuals, the forest edge 93 species and 536 individuals and 115 species and 379 individuals in the farmlands. The order Lepidoptera had the highest number of species (86), followed by Coleoptera (46), Hymenoptera (45), Diptera (16), Orthoptera (17), Hemiptera (12), Mantodea (7), Odonata (5), Blattodea (4), Neuroptera (2), Spirostreptida (2), Stylommatophora (2), Aranaea (1), Geophilomorpha (1), Isopoda (1), Phasmatodea (1), Polydesmida (1), Solifugae (1), Diplopoda (Pachylobidae) (1). Invertebrate conservation strategies are recommended for the Kaya Kauma.

Kaya Kauma forest is an important habitat for birds. A total of seventy-four (74) species from thirty-six (36) families were recorded during this survey carried out in November of 2018. There were up to twenty-seven (27) forest dependent species, two (2) of which were true forest bird species that exclusively live and breed in the forest. The Kaya is home to two (2) species classified by the IUCN as Near Threatened. They were; Southern Banded Snake Eagle (*Circaetus fasciolatus*) and Fischer's Turaco (*Tauraco fischeri*). The kaya forest and its surroundings are habitat for long and short-distance migratory species. Long distance migrants that migrate between to Europe and Asia were; Eurasian Bee-eater (*Merops apiaster*), Eurasian Golden Oriole (*Oriolus oriolus*) while those that migrate within Africa were; White-throated Bee-eater (*Merops albicollis*) and Northern Carmine Bee-eater (*Merops nubicus*).

Kaya Kauma is a harbor a considerable high number of mammals. A total of 42 mammal species were recorded during this survey. Out of the 42 mammal species recorded, 17 species were captured in traps while 25 species were observed opportunistically. A troop of olive baboons *Papio*

anubis were observed during the survey and colobus monkeys (*Colobus guereza*) made calls in the morning. Green vervet monkeys (*Chlorocebus pygerythrus*) were observed raiding mango fruits and groups of more than ten individuals were seen along pawpaw farmlands. Three shrews (*Crocidura* species) were captured in a herpetology pitfall trap and eight dik-dik scats were observed inside the forest.

A survey of amphibians and reptiles (herpetofauna) carried out in Kaya Kauma recorded a total of 23 species comprising of 5 amphibians and 18 reptile species occurring in the forest and its surroundings. The study was preliminary given that the survey period was short and conducted only in one season, therefore, more species can be discovered with more sampling effort. Diversity of herpetofauna in Kaya Kauma is compared with neighbouring Kaya Jibana and in addition a brief species account is provided. We recommend on possible non consumptive utilization of herpetofauna in Kaya Kauma as a way to motivate the continued conservation of the biodiversity in the area.

CHAPTER ONE:

GENERAL INTRODUCTION

1.1 Background

The coastal areas of East Africa especially Kenya and Tanzania are recognized as an areas of global biodiversity importance and are considered as one of the 25 world's biodiversity hotspots due to the concentration of many narrowly endemic plants and animal species in exceptionally small areas (Burges, 1998; Lehman & Kioko, 2000; Meyers et al., 2000; Mittermier et al., 2004). However, the intensity and nature of human activities increasingly threatens their productivity and biological diversity. This is partly due to the population increase, climate change among other factors.

Within the coastal forests in Kenya are the Kaya forests that are a relict forest patches protected by the traditions of the nine MijiKenda ethnic groups who regard them as sacred places and burial grounds (Spear, 1978; Nyamwero et al., 2008). These Kaya forests for many years remained protected through long standing local community rich and environmentally friendly traditions, taboos, beliefs and cultures. These taboos, traditions and other religious observations serve to regulate access and conduct at these forests, threatening dire punishment from the spirit world for those who flouted the rules (Githitho, 2008).

Kaya Kauma is one of the Kaya forests in Coastal Kenya situated in Kilifi County. It is primarily a Kaya of the Kauma people and occupies an area of over 100 hectares within the geographic coordinates of 03°:37'14''south and 39°44'10''east (Ang *et al.* 2008). Kaya Kauma is a primary Kaya forest sitting at 120 m above the sea level. Its size is over 100 ha in area (Ang *et al.* 2008). Kauma form the largest community living adjacent to the Kaya Kauma forest accounting for 75% population and the remaining 25% is composed of eight Mijikenda communities (Rajat *et al.*, 2017).

The Kaya forests are botanically diverse and have high conservation value. More than half of the Kenya's rare plants are found in the coast region, many within the Kaya Forests (Rodgers and Burgess, 2002; Younge et al, 2002). However, biodiversity studies on other taxa within the Kaya forests has remained few. For example, invertebrates' surveys within the Kaya forests began in 1994 in Kaya Muhaka and Kaya Kinondo (Lehman & Kioko, 2000). Other studies that followed

include Rogo & Odulaja, 2001, Kaya Mrima, Kinondo and Jibana in 2009 (Lange, 2011) and more in Kaya Muaka (Chiawo 2011). Herpetological surveys within the Kaya forests only began in 2009 (Malonza &Nyamache, 2010) when Kaya Mrima, Kinondo and Jibana were visited. In addition, Malonza et al., 2016 surveyed additional 9 Kaya forests. Much more still remains to be done to understand the biodiversity of Kaya forests.

Conservation of the coastal forests including the sacred Kaya forests is becoming a big challenge given their location in the centre of the country's tourism industry. The rising need for land for, infrastructure, agriculture, fishing, mining (iron ore and titanium) logging for timber, woodcarving and the rapid socio-cultural changes continue to be major threats leading to the loss of smaller Kayas and groves (Younge et al, 2002; Nyamwero et al, 2008; Tabor et al., 2010). Considering the magnitude of these threats, efforts should be made to conserve them. For this to be realized however there is a need to conduct comprehensive surveys of all the biodiversity found in these forests and document their diversity, conservation status and economic values as a baseline to such initiatives.

The current study aimed at documenting the biodiversity of both flora and fauna. The study covered five specific taxa; invertebrates' zoology, birds, mammals, amphibians and reptiles and plants. Data from the research survey sheds more light on significance of this Kaya Kauma forest conservation of its biodiversity

1.2 References

- Ang, T. W., Have, H. T., Solbakk, J. H., & Nys, H. (2008). UNESCO Global Ethics Observatory: database on ethics related legislation and guidelines. *Journal of Medical Ethics*, 34(10), 738–741.
- Burgess, N.D., G.P Clarke & W.A. Rodgers (1998). Coastal forests of eastern Africa: Status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society* 64: 333–367. Corn (1994),
- Chiawo, (2011). Composition and floral resources of bees and butterflies in Kaya Muhaka forest and surrounding farmlands, Kwale County, Kenya (Masters dissertation, Kenyatta University).

- Githitho, A. (2008). The World Heritage Convention; Nomination Dossier for inscription on the World Heritage list; The Sacred Mijikenda Kaya Forests (Kenya).
- Lange, C. (2011) The Role of Coastal Kaya Forests in Sustainable Biodiversity Conservation and Enhancement of Community Livelihoods. Report to National Council for Science and Technology (NCST) 95pp.
- Lehmann, I., & Kioko, E. (2000). Preliminary survey on butterflies and moths and their habitats in two Kaya forests of the Kenya coast. Metamorphosis, (Suppl. 4), 1-5
- Malonza P.K. & J.O. Nyamache (2010). The role of coastal Kaya forests in sustainable biodiversity conservation and enhancement of community livelihoods: Case study of Kaya Mrima, Kinondo and Jibana herpetofauna. 20pp. Unpublished report.
- Malonza, P.K., D.M. Mulwa & J.O. Nyamache (2016). Preliminary herpetofauna diversity in selected coastal Kaya forests and comparative other forests in Kwale County: A technical report
- Mittermier, R.A., Gill, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux,
 J. & da Fonesca, G.A.B. (2004). Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. Connex, Mexico City.
- Myers, N., Mittermeir, A. R., Mittermeir, G. C., da Fonseca, B. A. G. & Kent, J. (2000).Biodiversity of Hotspots of Conservation priorities. *Nature*, **403**: 853 859.
- Nyamweru, C., Kibet, S., Pakia, M., & Cooke, J. (2008). The Kaya forests of coastal Kenya: 'Remnant patches' or dynamic entities.
- Rajat, J., Jefwa, J., & Mwafaida, J. (2017). Survey on Indigenous Food Plants of Kaya Kauma and Kaya Tsolokero in Kilifi County Kenya. *Journal of Life Sciences*, *11*, 82–90.
- Rodgers, A. W. & Burgess, D. N. (2000). Taking conservation action. Pp. 317 334. In Burgess,
 N. D. & Clarke, P. G. (eds.) *Coastal Forests of Eastern Africa*. Gland, Switzerland and Cambridge, UK.
- Rogo, L., & Odulaja, A. (2001). Butterfly populations in two forest fragments at the Kenya coast. African Journal of Ecology, 39(3), 266-275.

- Spear, T. T. (1978). *The Kaya complex: a history of the Milikenda peoples of the Kenya Coast to* 1900. Kenya Literature Bureau. Nairobi.
- Tabor, K., N.D Burgess, B.P. Mbilinyi, J. Kashaigili & M.K. Steiniger (2010). Forest and wood cover and change in Coastal Tanzania and Kenya, 1990 to 2000. Journal of East African Natural History 99 (1): 19–45.
- Tabor, K., N.D Burgess, B.P. Mbilinyi, J. Kashaigili & M.K. Steiniger (2010). Forest and wood cover and change in Coastal Tanzania and Kenya, 1990 to 2000. *Journal of East African Natural History* 99(1): 19–45.
- Younge, A., G. Negussie & N. Burgess (2002). Eastern Africa Coastal forest programme. Regional workshop report submitted to WW-EARPO

CHAPTER TWO DIVERSITY AND ABUNDANCE OF INVERTEBRATES IN KAYA KAUMA, KILIFI COUNTY

Esther N. Kioko and Morris N. Mutua

Invertebrate Zoology Section, Zoology Department National Museums of Kenya, P.O. Box, 40658, 00100 Nairobi; Email address: ekioko@museums.or.ke; mmutua17@yahoo.com

2.1 Summary

Within the coastal forests in Kenya are the Kaya forests. Kaya is a Mijikenda word for their small central residential village protected by the surrounding forest. These Kaya forests for many years remained protected through long standing local community rich and environmentally friendly traditions, taboos, beliefs and cultures. In the recent times though, decline in community adherence to these taboos, traditions and beliefs has been witnessed threatening the survival of these long standing forests. There is need for strategic management plans for the Kaya forests and this calls for studies of the biodiversity in these forests. The biodiversity study will provide the baseline data on species for proper management of these forests.

This study was undertaken to describe the Invertebrate biodiversity of Kaya Kauma. The studies were carried out using standard entomological methods and focused on the forest, forest edge and farmlands. The study recorded a total of 251 species and 1746 invertebrate individuals distributed across 18 Orders in Kaya Kauma forest, forest edge and surrounding farmlands. The forest recorded 162 species and 827 individuals, the forest edge 93 species and 536 individuals and 115 species and 379 individuals in the farmlands. The order Lepidoptera had the highest number of species (86), followed by Coleoptera (46), Hymenoptera (45), Diptera (16), Orthoptera (17), Hemiptera (12), Mantodea (7), Odonata (5), Blattodea (4), Neuroptera (2), Spirostreptida (2), Stylommatophora (2), Aranaea (1), Geophilomorpha (1), Isopoda (1), Phasmatodea (1), Polydesmida (1), Solifugae (1), Diplopoda (Pachylobidae) (1). Invertebrate conservation strategies are recommended for the Kaya Kauma.

2.2 Introduction

The coastal areas of East Africa contain some of the world's richest ecosystems and provide valuable resources for many people (Burges *et al* 1998; Lehman & Kioko, 2000; Meyers *et al.*, 2000; Mittermier *et al.*, 2004, Lehmann, 2008). However, the intensity and nature of human activities increasingly threatens their productivity and biological diversity. This is partly due to the population increase, climate change among other factors.

According to IUCN/WCMC (1992), Kenya has the most diverse forests in East Africa. Within the coastal forests in Kenya are the Kaya forests. Kaya is a Mijikenda word for their small central residential village protected by the surrounding forest (Spear, 1978). The Mijikenda are nine closely related people, Kauma, Giriama, Chonyi, Jibana, Kambe, Ribe, Rabai, Duruma and Digo. The Kaya forest patches are protected by their traditions which regard them as sacred places and burial grounds. These Kaya forests for many years remained protected through long standing local community rich and environmentally friendly traditions, taboos, beliefs and cultures. These taboos, traditions and other religious observations serve to regulate access and conduct at these forests, threatening dire punishment from the spirit world for those who flouted the rules (Githitho, 2008). Few of the Kayas are still used for ceremonies and as burial groves (Robertson & Luke, 1993). 23 Kayas and sacred grooves are gazetted as National Monuments since 1992 and are protected and managed by the National Museums of Kenya and the Coastal Forest Conservation Unit (CFCU) in collaboration with the local community (the Kaya Elders) and other stakeholders. Access to the Kaya forests and activity within them has been kept minimal leaving the forests as "intact islands" preserving considerable biodiversity despite their small sizes (Githitho, 2008).

The Kaya forests have a diversity of plants with more than half of the Kenya's rare plants found in the coast region, many within the Kaya Forests (Rodgers and Burgess, 2002). However biodiversity studies on other taxa within the Kaya forests has remained few. For invertebrates, surveys within the Kaya forests began in 1994 in Kaya Muhaka and Kaya Kinondo (Lehman & Kioko, 2000). Other studies that followed include Rogo & Odulaja, 2001, Kaya Mrima, Kinondo and Jibana in 2009 (Lange & Mutua, 2011) and more in Kaya Muaka (Chiawo 2011). Much more still remains to be done to understand the invertebrate diversity and their habitats in the Kaya forests. Additionally, conservation status of endemic and/or rare insects and other invertebrates in the Kayas still remains largely unknown. Also, the current decline in the long standing local community rich and environmentally friendly traditions, taboos, beliefs and cultures is threatening the survival of these long standing pristine Kaya forests. Comprehensive biodiversity surveys are therefore necessary as the Kayas are facing great threats from the rising need for land mainly for; infrastructure, agriculture, fishing, mining (iron ore and titanium) logging for timber, woodcarving and the rapid socio-cultural changes which continue to be major the threats leading to the loss of smaller Kayas and groves (Tabor *et al.*, 2010). This study aimed at documenting the diversity and abundance of invertebrates in Kaya Kauma located in Kilifi County.

2.3 Materials and Methods Study area

The study was carried out along three transects in Kaya Kauma located in North Coast in Kilifi County (Figure 1).

Figure 1 Map of Kenya showing Kilifi County and the invertebrate sampling points

The sampling for invertebrates was carried out between 21st to 26th November 2018. Four sampling points were identified in each transect with an equidistance of 200 metres between the points.

Location	Habitat	Transect	Point	Latitude	Longitude	Altitude (m)
Kaya kauma	Forest	1	1	3.62568	39.73695	101
Kaya kauma	Forest	1	2	3.62745	39.73655	103
Kaya kauma	Forest	1	3	3.62922	39.73688	115
Kaya kauma	Forest	1	4	3.62049	39.73627	42
Kaya kauma	Forest edge	2	1	3.62448	39.73236	57
Kaya kauma	Forest edge	2	2	3.62555	39.73382	81
Kaya kauma	Forest edge	2	3	3.62708	39.73468	90
Kaya kauma	Forest edge	2	4	3.62887	39.73507	107
Kaya kauma	Farmland	3	1	3.60953	39.74143	8
Kaya kauma	Farmland	3	2	3.60995	39.73967	16
Kaya kauma	Farmland	3	3	3.61175	39.73852	36
Kaya kauma	Farmland	3	4	3.61016	39.7377	18
Nzovuni	River	0	0	3.62462	39.73042	10

Table 1: Sampling transects and points

Sampling Methods

Different methods were in-cooperated in the survey which ensured proper representation of species occurring in the Kaya Kauma forest, forest edge and surrounding farmlands on the identified transects. They included;

• Pitfall trapping

These traps were basically used for trapping flightless ground living arthropods, especially ground beetles. The traps (usually 125ml containers) were placed in a hole with the upper rim flush with the ground surface. A killing agent and preservative (ethanol) was added in the traps to avoid decay of caught specimens. In each transect, a total of 32 traps were laid and left for 48hours to trap whereby they were harvested on expiry of this duration. Collected samples were transferred into jars containing 70% for temporally preservation and storage waiting further processing.

• Pan traps

Pan traps will be mainly used to collect pollinators such bees, some species of beetles, flies and also to collect crop pests e.g. aphids, fruit flies etc. The traps are usually small bowls painted with two different colors yellow and blue to mimic flowers. 32 traps were spread randomly within the transect and filled half way with water mixed with odorless detergent to break the water surface tension. The bowls /traps were inspected every evening to harvest trapped insects which were stored in well labeled vials containing 70% ethanol.

• Baited Butterfly traps

These traps were specifically used to capture fast-flying butterflies, such as *Charaxes, that* dwell in tree canopies and cannot otherwise be reached. The traps were hoisted over a high tree branch with a rope, and lowered to remove the catch. Fermenting fruits (bananas & pineapples) were used as a bait to lure butterflies and rose beetles into these traps. 12 traps were set in every transect and left for two days before transferring to another transect. Harvesting was done every evening. Collected butterflies were humanely killed and stored in well labeled butterfly envelops.

• Time Limited searches/Sweepnet

Time limited searches involved walking along a transect within a time limit, collecting invertebrates under tree logs, rocks, on vegetation etc. It also entailed use of a sweep net to collect flying insects like butterflies, flies, dragonflies and bees. This was best done between 10am –noon when most insects were active feeding and hopping from place to the other. Collected specimens were killed and preserved for further processing.

2.4 Results

A total of 251 species and 1746 invertebrates' individuals distributed across 18 Orders were documented in Kaya Kauma forest, forest edge and surrounding farmlands. The documentation was as follows; 162 species and 827 individuals in the forested area, 93 species and 536 individuals in the forest edge, and 115 species and 379 individuals in the farmlands.

The order Lepidoptera had the highest number of species (86), followed by Coleoptera (46), Hymenoptera (45), Diptera (16), Orthoptera (17), Hemiptera (12), Mantodea (7), Odonata (5), Blattodea (4), Neuroptera (2), Spirostreptida (2), Stylommatophora (2), Aranaea (1), Geophilomorpha (1), Isopoda (1), Phasmatodea (1), Polydesmida (1), Solifugae (1).

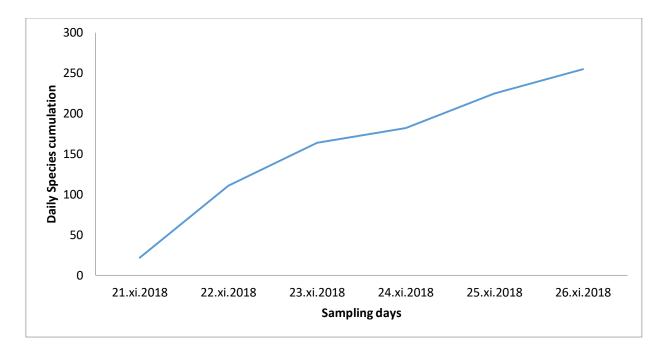


Figure 2 The Christmas butterfly (Lepidoptera) and Blister beetle (Coleoptera) foraging

Invertebrate species cumulative curve

Invertebrates were recorded on a daily basis. The cumulative number of species was plotted against the sampling effort which was based on daily species count. This linear regression approach, also called species incidence, helps to provide a species list for an area with an approximate assessment of completeness of sampling (Sutherland 1996, Pomeroy and Tengecho, 1986). The graph showing species accumulation indicates that with additional effort, more species are likely to be detected, since the graph did not, reach asymptote (flattening toward a direction where new species are not likely to be encountered) (Figure 3). Therefore, another sampling based on seasonality (dry/wet season) is likely to discover additional species.

Figure 3 Species cumulative curve

Species composition and abundance in the different habitats

The forest had the highest species composition 44%, followed by the farmland 31%, while the forest edge had the least 25%. The forest also supported the highest number of individuals (47%), followed by the forest edge (31%), while the farmland had the list number of individuals (22%) (Figure 4).

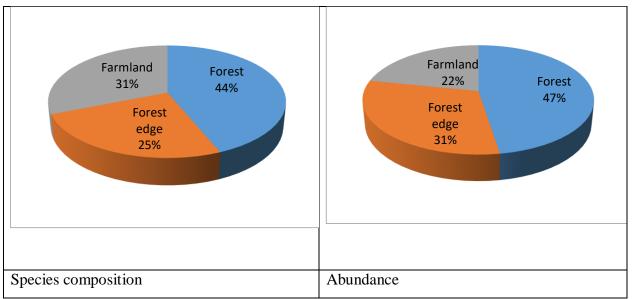


Figure 4 Species composition and abundance in the sampled habitats

Species richness and abundance in the forest transect

The order Lepidoptera (butterflies and moths) recorded the highest number of species (50), followed by Hymenoptera (31) and Coleoptera (28) while the order Diptera had the highest abundance (362) followed by Hymenoptera (164) and Lepidoptera (123) (Figure 5).

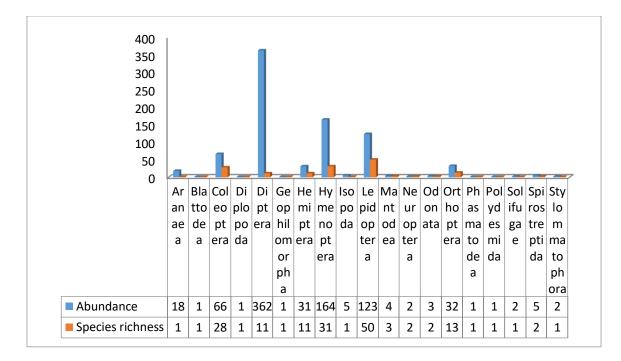


Figure 5 Species richness and abundance in the forest

Species richness and abundance in the Forest edge transect

The order Lepidoptera recorded the highest number species (39) followed by Hymenoptera (23), while the orders Aranaea and Spirostreptida had the least (1 each). The order Hymenoptera had the highest abundance (352), followed by order Lepidoptera (96), while the order Spirotreptida had the least (1) (Figure 6)

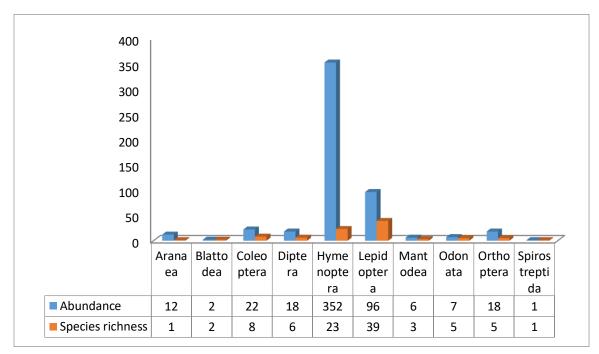


Figure 6 Species richness and abundance in the Forest edge

Species richness and abundance in the farmlands transect

The order Lepidoptera recorded the highest number of species (45), while Orders Aranaea, Hemiptera and Isopoda had the least (1 each). The order Lepidoptera had the highest abundance while the orders Hemiptera and Isopoda had the least (1 each) (Figure 7)

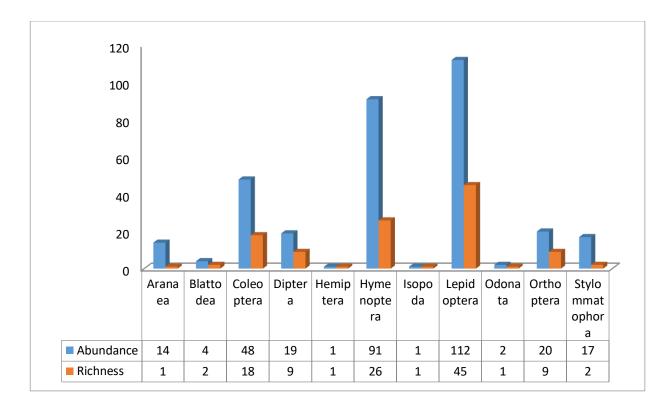


Figure 7 Species richness and abundance in the farmlands

2.5 Discussions

This study is the first invertebrate survey done in Kaya Kauma and has recorded that Kaya Kauma forest and the surrounding farmlands support a great number of invertebrates, 251 species. Some of the specimens were not fully identified to species level owing to taxonomic uncertainties and they will still be reviewed with time and as expertise becomes available and the current species lists is likely to increase. This high number of invertebrate biodiversity for Kaya Kauma confirms the prevalent view among conservationists and scientists that Kaya forests are truly biodiversity hotspots despite their relatively small sizes.

Despite the short time of the study of only six days, 79 butterfly species were recorded in Kaya Kauma which makes it the second highest Kaya Forest so far in butterfly diversity in reference to 112 species recorded for Kaya Muhaka and 45 species for Kaya Kinondo with surveys done over a longer period of time (Lehmann and Kioko, 2000). It was observed that among these butterflies, a number of coastal endemic species were included, pointing to the great value of this Kaya in the conservation of coastal endemic species. Four coastal endemic butterfly species, *Acraea rabbaiae*

(Clear wing Acraea), *Acraea satis* (Coast Acraea), *Graphium kirbyi* (Kirby's swallowtail) and *Baliochila minima*, (Minimal buff) were recorded along the forest transect. *Neptidopsis fulgurata* (Malagasy sailer), a coastal endemic species was recorded in the forest edge along Nzovuni River. *Graphium philonoe* (White-dappled swallowtail), mainly a butterfly of the coastal forests, but one of the transitional species, usually being more common in the open parts of forests and along the margins was recorded in all three habitats; forest, forest edge and the farmland.

Comparing the records from Kaya Kauma to what is held at the National Museums of Kenya (NMK) reference collection, Kaya Kauma recorded a number of other insects that are endemic to the coastal region. *Ceroctis calicera*, a meloid beetle and *Dioncomena superba*, a member of Katydids group belonging to the family Tettigoniidae, have all specimens housed at NMK having coastal distribution.

Kaya Kauma forest harbours some quite rare insects based on information sourced from NMK invertebrates scientific reference collection. One such insect is *Dromica nobilitata*, a tiger beetle in the family Cicindelidae. Only one specimen is at the NMK insect reference collection and was collected in 1982 at Shimba Hills. Another such rare collection was that of *Catasigerpes margarethae*, a praying mantid in the family Mantidae. Only two specimens are in the NMK insect collection and were collected in 1969 at Arabuko-Sokoke forest.

Invertebrate species of economic importance were documented. This included some fascinating and conspicuous butterfly species. These are a potential for butterfly farming in the area. The local communities or CBOs could be encouraged to visit the Kipepeo buttefly frming project in Arabuko Sokoke forest to learn about the enterprise. Apiculture is also a potential insect based enterprise as honey bees (*Apis mellifera*) were recorded in this study. The Kaya Kauma forest community should be trained on better methods of bee keeping, honey harvesting and post-hrvest processes for management of apiculture for better livelihoods.

Most of the invertebrate species from this study play a critical role in ecosystem like being part of the food chains, degradation/decomposition of organic matter in the ecosystems (millipedes (Diplopoda), dung beetles (*Onthophagus sp*). Agents of pollination (social and solitary bees, butterflies, beetles, flies) parasitic wasps which are potential biological control agents and some of the species are major ecological bio-indicators for long term management and monitoring programmes in ecosystems (such as the butterfly species).

2.6 Conclusion and Recommendations

This study has provided baseline information on the current status of invertebrates' diversity in both Kaya Kauma forest and the surrounding farmlands. The data generated from this survey is essential and will be used in the development of Kaya Kauma strategic management plan that will guide the conservation of this unique Kaya forest.

Further studies are necessary to document the conservation areas broadest invertebrates' fauna and therefore propose more work in the following areas;

- More comprehensive surveys should be conducted to build on the already established checklist.
- More effort (targeting both diurnal & nocturnal species) should be dedicated to the description of new species since appears viable.
- Documentation and monitoring of endemic species as they could be good indicator species in conservation studies.
- Selection of key indicator invertebrates' species to establish conservation status and set monitoring tools
- Long term monitoring work in the already established permanent transects
- Red Listing of the ecosystems' endemic threatened or endangered species.
- Creating awareness and training the local communities on better ways of utilizing natural resources within the ecosystem focusing on insect based enterprises such as butterfly farming, bee keeping and silk farming.

2.7 References

- Ackery, P. R. 1995. Carcasson's African Butterflies. *An Annotated Catalogue of the Papilionoidea* and Hesperioidea of the Afrotropical Region. CSIRO, Canberra
- Andrewartha, H.G., and Birch, L.C. 1960. Some recent contributions to the study and distribution and abundance of insects. *A. Rev. Ent.* 5:219-42. [33;39]

- Barnes, R.F.W. 1990. Deforestation trends in tropical Africa. *Africa journal of ecology* 28:161-173
- Booth R.G, M.L Cox and R.B Madge 1990. *IIE guides to insects of importance to man*. International institute of entomology
- Burgess, N.D., Clarke, G.P. & Rodgers, W.A. 1998. Coastal forests of eastern Africa: Status, species endemism and its possible causes. *Biological Journal of the Linnean Society* 64: 337.
- CEPF. 2003. <u>Ecosystem Profile: Eastern Arc Mountains and Coastal Forests of Tanzania and</u> <u>Kenya Biodiversity Hotspot</u>. Washington D.C.
- Chiawo, (2011). Composition and floral resources of bees and butterflies in Kaya Muhaka forest and surrounding farmlands, Kwale County, Kenya (Masters dissertation, Kenyatta University).
- Githitho, A. (2008). The World Heritage Convention; Nomination Dossier for inscription on the World Heritage list; The Sacred Mijikenda Kaya Forests (Kenya).
- Lamoreux, J. & da Fonesca, G.A.B. (2004). Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. Connex, Mexico City.
- Lange, C. (2011) The Role of Coastal Kaya Forests in Sustainable Biodiversity Conservation and Enhancement of Community Livelihoods. Report to National Council for Science and Technology (NCST) 95pp.
- Larsen, T.B. 1996: *The Butterflies of Kenya and their Natural History* Updated Second Edition.Oxford University Press, Oxford, England. I-xxii, 1-500.
- Lehmann, I. (2008). Ten new species of metarbelidae (Lepidoptera; Cossoidea) from the coastal forests and the Eastern Arc mountains of Kenya and Tanzania, including one species from two upland forests. *Journal of East Africa Natural History*. **97**(1): 43 82
- Lehmann, I., & Kioko, E. (2000). Preliminary survey on butterflies and moths and their habitats in two Kaya forests of the Kenya coast. Metamorphosis, (Suppl. 4), 1-52.
- Mittermier, R.A., Gill, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G.,

- Myers, N., Mittermeir, A. R., Mittermeir, G. C., da Fonseca, B. A. G. & Kent, J. (2000).Biodiversity of Hotspots of Conservation priorities. *Nature*, **403**: 853 859.
- Robertson, S. A. and Luke, W. R. Q. (1993). Kenya Coastal Forests. Report of NMK/WWF Coast Forest Survey. World Wide Fund for Nature, Nairobi.
- Rodgers, A. W. & Burgess, D. N. (2000). Taking conservation action. Pp. 317 334. In Burgess,
 N. D. & Clarke, P. G. (eds.) *Coastal Forests of Eastern Africa*. Gland, Switzerland and Cambridge, UK.
- Rogo, L., & Odulaja, A. (2001). Butterfly populations in two forest fragments at the Kenya coast. African Journal of Ecology, 39(3), 266-275.
- Spear, T. T. (1978). *The Kaya complex: a history of the Milikenda peoples of the Kenya Coast to* 1900. Kenya Literature Bureau. Nairobi.
- Tabor, K., N.D Burgess, B.P. Mbilinyi, J. Kashaigili & M.K. Steiniger (2010). Forest and wood cover and change in Coastal Tanzania and Kenya, 1990 to 2000. Journal of East African Natural History 99 (1): 19–45.

No.	Order	Family	Genus/species	Farmland	Forest	Forest edge	River
1	Aranaea			14	18	12	0
2	Blattodea	Blattidae	Ectobius sp	3	0	0	0
3	Blattodea	Blaberidae	Nauphoeta sp	1	0	1	0
4	Blattodea	Blattellidae	Blattella germanica	0	1	0	0
5	Blattodea	Blattidae	Pseudoderopeltis rhombifolia	0	0	1	0
6	Coleoptera	Chrysomelidae	Monolepta sp	2	0	0	0
7	Coleoptera	Chrysomelidae	Lema sp	4	0	0	0
8	Coleoptera	Carabidae	Harpalus sp	5	3	0	0
9	Coleoptera	Carabidae	Anisodactylus australis	1	0	0	0
10	Coleoptera	Carabidae	Pheropsophus raffrayi	1	2	0	0
11	Coleoptera	Meloidae	Ceroctis calicera	1	0	0	0
12	Coleoptera	Scarabaeidae	Anomala sp	1	0	0	0
13	Coleoptera	Carabidae	Bradybaenus opulentus	6	0	0	0
14	Coleoptera	Tenebrionidae	Gonocephlum sp	2	0	0	0

2.8 Appendices

Appendix 2.1: Invertebrates and their distributions amongst the different sampled habitats

15	Coleoptera	Nitidulidae	Lasiodactylus sp	2	0	0	0
16	Coleoptera	Meloidae	Mylabris aperta	6	0	0	0
17	Coleoptera	Chrysomelidae	Chrysolina rubripennis	4	0	0	0
18	Coleoptera	Carabidae	Chlaenius sp	4	1	2	0
19	Coleoptera	Coccinelidae	Micraspis sp	2	0	0	0
20	Coleoptera	Meloidae	Coryna apicicornis	4	10	12	0
20	Coleoptera	Meloidae	Coryna kersteni	1	3	2	0
22	Coleoptera	Coccinelidae	Cheilomenes lunata	1	0	0	0
23	Coleoptera	Buprestidae	Chrysobothris dorsata	1	0	0	0
24	Coleoptera	Scarabaeidae	Genyodonta flavomaculata	0	1	0	0
24	Coleoptera	Carabidae	Chlaenius kurkirordias	0	1	0	0
26	Coleoptera	Scarabaeidae	Rhonotaenia balteata	0	1	0	0
20	Coleoptera	Scarabaeidae	Mausoleopsis amabilis	0	2	0	0
28	Coleoptera	Rhynchophoridae	Stenophida rufipes	0	3	0	0
29	Coleoptera	Tenebrionidae	Sepidium muscosum	0	1	0	0
30	Coleoptera	Curculionidae	Nematocerus sp	0	2	0	0
31	Coleoptera	Scarabaeidae	Anachalcos convexus	0	3	0	0
32	Coleoptera	Scarabaeidae	Trochalus sp	0	1	0	0
33	Coleoptera	Carabidae	Thermophilum hexastictum	0	1	0	0
34	Coleoptera	Tenebrionidae	Pycnocerus passerini	0	1	0	0
35	Coleoptera	Scarabaeidae	Onthophagus sp	0	2	0	0
36	Coleoptera	Tenebrionidae	Zophosis punctatafasciata	0	2	0	0
37	Coleoptera	Carabidae	Crepidogaster hubenthali	0	5	0	0
38	Coleoptera	Carabidae	Cypholoba bihamata	0	3	2	0
39	Coleoptera	Cerambycidae	sp1	0	1	0	0
40	Coleoptera	Cerambycidae	Philematium sansibaricum	0	4	0	0
41	Coleoptera	Cleridae	sp1	0	1	0	0
42	Coleoptera	Scarabaeidae	Sisyphus seminulum	0	1	0	0
43	Coleoptera	Meloidae	Coryna arrussina	0	1	1	0
44	Coleoptera	Cantharidae	Lycus constrictus	0	2	0	0
45	Coleoptera	Cicindelidae	Dromica nobilitata	0	1	0	0
46	Coleoptera	Histeridae	Hister sp	0	1	0	0
47	Coleoptera	Chrysomelidae	Hypercantha seminigra	0	5	0	0
48	Coleoptera	Chrysomelidae	Aspidomorpha dissentanea	0	1	0	0
49	Coleoptera	Scarabaeidae	Sisyphus sp	0	0	1	0
50	Coleoptera	Carabidae	Amophomerus opacus	0	0	1	0
51	Coleoptera	Cerambycidae	Anauxesis vittata	0	0	1	0
52	Diplopoda	Pachylobidae	Epilobolus sp	0	1	0	0
		-	-				

1		~	~ .		4.6		_
53	Diptera	Sarcophagidae	Sarcophaga sp	23	10	2	0
54	Diptera	Bombyliidae	Bombylius sp	1	0	0	0
55	Diptera	Asilidae	Ommatius sp	2	0	0	0
56	Diptera	Chamaemyiidae	sp1	32	0	0	0
57	Diptera	Sarcophagidae	Sarcophaga hirtipes	1	0	0	0
58	Diptera	Stratiomyidae	Ptecticus sp	0	6	0	0
59	Diptera	Calliphoridae	Bengalia sp	2	39	1	0
60	Diptera	Calliphoridae	Chrysomya chloropyga	1	0	1	0
61	Diptera	Muscidae	Musca domestica	3	4	0	0
62	Diptera	Platystomatidae	sp1	4	1	0	0
63	Diptera	Platystomatidae	Peltacanthina sp	0	32	1	0
64	Diptera	Platystomatidae	Peltacanthina simillima	0	260	12	0
65	Diptera	Asilidae	Alcimum rubiginosus	0	1	1	0
66	Diptera	Drosophilidae	Drosophila melanogaster	0	4	0	0
67	Diptera	Diopsidae	Diopsis sp	0	1	0	0
68	Diptera	Tachinidae	sp1	0	3	0	0
69	Geophilomorpha			0	1	0	0
70	Hemiptera	Pyrrhocoridae	Dysdercus cardinalis	1	0	0	0
71	Hemiptera	Pentatomidae	sp1	0	1	0	0
72	Hemiptera	Pentatomidae	Anaplogonius nigricollis	0	11	0	0
73	Hemiptera	Coreidae	Plectronemis bicolor	0	2	0	0
74	Hemiptera	Reduviidae	Ectomoris sp	0	1	0	0
75	Hemiptera	Reduviidae	Polytoxus sp	0	7	0	0
76	Hemiptera	Pentatomidae	Dalsira sp	0	1	0	0
77	Hemiptera	Coreidae	Cletus sp	0	3	0	0
78	Hemiptera	Coreidae	Mydonia tuberculosa	0	1	0	0
79	Hemiptera	Lygaeidae	Dieuches armipes	0	2	0	0
80	Hemiptera	Pentatomidae	Caystrus basalis	0	1	0	0
81	Hemiptera	Cydnidae	Plonisa plagiata	0	1	0	0
82	Hymenoptera	Apidae	Macrogalea candida	18	2	1	0
83	Hymenoptera	Apidae	Apis melifera	8	5	5	0
84	Hymenoptera	Apidae	Xylocopa calens	1	1	0	0
85	Hymenoptera	Vespidae	Belanogaster sp	1	2	1	0
86	Hymenoptera	Sphecidae	Ammophila sp	1	1	0	0
87	Hymenoptera	Anthophoridae	Anthophora sp	1	0	0	0
88	Hymenoptera	Formicidae	Camponotus maculatus	2	0	1	0
89	Hymenoptera	Formicidae	Ocymyrmex waetzaeckeri	11	16	10	0
90	Hymenoptera	Pompilidae	Pompilius diversus	13	10	14	0
		-	-				

01	Hymenoptera	Eumenidae	Ancistrocerus sp	2	3	2	0
91	Hymenoptera	Pompilidae	Synergris analis	1	2	0	0
92	Hymenoptera	Apidae	Braunsapis sp	1	0	0	0
93	Hymenoptera	Halictidae	Lasioglossum sp	6	3	1	0
94		Mutiliidae	· ·	2		0	0
95	Hymenoptera		Trogaspidia niveitegulata		0		0
96	Hymenoptera	Pompilidae	sp1	1	7	1	0
97	Hymenoptera	Sphecidae	Tachysphex pentheri	1	2	1	
98	Hymenoptera	Halictidae	Pseudapis sp	1	1	0	0
99	Hymenoptera	Pompilidae	Pseudagenia subpictiolatus	2	0	1	0
100	Hymenoptera	Ichneumonidae	sp2	2	2	0	0
101	Hymenoptera	Apidae	Ceratina sp	1	0	0	0
102	Hymenoptera	Sphecidae	Tachysphex sp	1	0	2	0
103	Hymenoptera	Formicidae	Pachycondyla tarsata	5	60	278	0
104	Hymenoptera	Pompilidae	sp2	1	5	2	0
105	Hymenoptera	Apidae	Anthophora torrida	1	0	0	0
106	Hymenoptera	Formicidae	Pheidole sp	6	13	5	0
107	Hymenoptera	Scoliidae	Cathimeris sp	1	0	0	0
108	Hymenoptera	Pompilidae	Pompilius sp	0	1	1	0
109	Hymenoptera	Vespidae	Polistes fastidiosus	0	2	0	0
110	Hymenoptera	Formicidae	Pachycondyla cribrinodis	0	5	0	0
111	Hymenoptera	Megachilidae	Megachile sp	0	3	0	0
112	Hymenoptera	Formicidae	Pachycondyla sp	0	4	0	0
113	Hymenoptera	Apidae	Thyreus carinata	0	1	0	0
114	Hymenoptera	Mutiliidae	Trogaspidia sp	0	2	1	0
115	Hymenoptera	Formicidae	Polyharchis gagates	0	4	18	0
116	Hymenoptera	Halictidae	Lipotriches sp	0	1	0	0
117	Hymenoptera	Pompilidae	Cyphononyx atropos	0	1	0	0
118	Hymenoptera	Braconidae	Gatrothacea sp	0	3	0	0
119	Hymenoptera	Sphecidae	Stizus marshalli	0	1	0	0
120	Hymenoptera	Apidae	Meliponula sp	0	1	0	0
121	Hymenoptera	Ichneumonidae	sp1	0	1	0	0
122	Hymenoptera	Formicidae	Polyharchis sp	0	0	9	0
123	Hymenoptera	Sphecidae	Liris sp	0	0	1	0
124	Hymenoptera	Sphecidae	sp1	0	0	1	0
125	Hymenoptera	Formicidae	Dorylus sp	0	0	3	0
126	Hymenoptera	Eumenidae	sp1	0	0	1	0
127	Isopoda	Cylistidae	Cylisticus convexus	1	5	0	0
128	Lepidoptera	Nymphalidae	Charaxes cithaeron	0	1	2	0

129	Lepidoptera	Nymphalidae	Charaxes jahlusa	0	6	8	0
130	Lepidoptera	Nymphalidae	Bicyclus sp	0	7	2	0
131	Lepidoptera	Nymphalidae	Charaxes etesipe	0	0	2	0
132	Lepidoptera	Nymphalidae	Charaxes saturnus	0	1	1	0
133	Lepidoptera	Nymphalidae	Charaxes kirki	0	0	1	0
134	Lepidoptera	Nymphalidae	Charaxes castor	1	0	0	0
135	Lepidoptera	Nymphalidae	Charaxes varanes	11	3	5	0
136	Lepidoptera	Nymphalidae	Melanitis leda	4	2	0	0
137	Lepidoptera	Arctiidae	sp1	1	0	0	0
138	Lepidoptera	Nymphalidae	Henotesia perspicua	2	1	0	0
139	Lepidoptera	Papilionidae	Graphium philonoe	4	2	1	0
140	Lepidoptera	Nymphalidae	Charaxes brutus	1	5	3	0
141	Lepidoptera	Nymphalidae	Byblia ilithyia	2	2	0	0
142	Lepidoptera	Nymphalidae	Acraea cuva	2	0	0	0
143	Lepidoptera	Nymphalidae	Acraea neobule	2	2	2	0
144	Lepidoptera	Nymphalidae	Junonia oenone	6	1	1	0
145	Lepidoptera	Noctuidae	Sphingimorpha sp	3	0	0	0
146	Lepidoptera	Nymphalidae	Bicyclus safitza	6	1	0	0
147	Lepidoptera	Papilionidae	Papilio philonoe	1	0	0	0
148	Lepidoptera	Papilionidae	Papilio constantinus	1	2	4	0
149	Lepidoptera	Pieridae	Colotis ione	7	5	9	0
150	Lepidoptera	Pieridae	Eronia cleodora	1	6	0	0
151	Lepidoptera	Noctuidae	sp1	3	5	0	0
152	Lepidoptera	Nymphalidae	Acraea eponina	5	0	0	0
153	Lepidoptera	Nymphalidae	Eurytela dryope	5	4	1	0
154	Lepidoptera	Pieridae	Catopsilia florella	5	5	2	0
155	Lepidoptera	Noctuidae	sp2	1	3	0	0
156	Lepidoptera	Nymphalidae	Danaus chrysippus	6	1	0	0
157	Lepidoptera	Pieridae	Belenois gidica	1	0	0	0
158	Lepidoptera	Pieridae	Colotis auxo	1	1	0	0
159	Lepidoptera	Pieridae	Colotis danae	2	0	0	0
160	Lepidoptera	Pieridae	Colotis euippe	2	2	1	0
161	Lepidoptera	Lycaenidae	Pentila pauli	1	0	1	0
162	Lepidoptera	Nymphalidae	Junonia natalica	1	0	1	0
163	Lepidoptera	Nymphalidae	Acraea anemosa	2	1	3	0
164	Lepidoptera	Arctiidae	sp2	1	0	0	0
165	Lepidoptera	Pieridae	Belenois creona	1	0	0	0
166	Lepidoptera	Papilionidae	Papilio demodocus	3	16	4	0

167	Lepidoptera	Pieridae	Nephronia thalassina	1	0	1	0
168	Lepidoptera	Pieridae	Colotis antevippe	1	0	0	0
169	Lepidoptera	Nymphalidae	Hypolimnas misippus	1	0	1	0
170	Lepidoptera	Papilionidae	Papilio nireus	1	2	2	0
171	Lepidoptera	Hesperiidae	Eretis lugens	1	1	0	0
172	Lepidoptera	Lycaenidae	Axiocerces punicea	1	0	0	0
173	Lepidoptera	Pieridae	Colotis evagore	1	0	0	0
174	Lepidoptera	Lycaenidae	Zizula hylax	6	0	5	0
175	Lepidoptera	Lycaenidae	Leptotes pirithous	1	0	1	1
176	Lepidoptera	Lycaenidae	Actizera stellata	1	0	0	0
177	Lepidoptera	Hesperiidae	Pelopidas mathias	1	0	0	0
178	Lepidoptera	Hesperiidae	Borbo sp	1	0	0	0
179	Lepidoptera	Papilionidae	Graphium kirbyi	0	1	0	0
180	Lepidoptera	Nymphalidae	Euxanthe wakefieldi	0	2	0	0
181	Lepidoptera	Papilionidae	Papilio dardanus	0	6	2	0
182	Lepidoptera	Nymphalidae	Acraea satis	0	1	0	0
183	Lepidoptera	Nymphalidae	Euphaedra neophron	0	6	6	0
184	Lepidoptera	Nymphalidae	Pardopsis punctatissima	0	2	0	0
185	Lepidoptera	Nymphalidae	Hypolimnas deceptor	0	1	0	0
186	Lepidoptera	Nymphalidae	Salamis anacardii	0	1	0	0
187	Lepidoptera	Pieridae	Colotis daira	0	1	0	0
188	Lepidoptera	Nymphalidae	Hamanumida daedalus	0	1	1	0
189	Lepidoptera	Noctuidae	sp3	0	2	0	0
190	Lepidoptera	Sphingidae	Macroglossum trochilus	0	1	0	0
191	Lepidoptera	Nymphalidae	Pseudacraea boisduvali	0	1	0	0
192	Lepidoptera	Nymphalidae	Bicyclus campinus	0	2	1	0
193	Lepidoptera	Lycaenidae	Pentila tropicalis	0	1	0	0
194	Lepidoptera	Nymphalidae	Acraea rabbaiae	0	1	0	0
195	Lepidoptera	Pieridae	Dixeia charina	0	1	0	0
196	Lepidoptera	Lycaenidae	Baliochila minima	0	1	0	0
197	Lepidoptera	Papilionidae	Graphium colonna	0	1	0	0
198	Lepidoptera	Nymphalidae	Eurytela hiarbas	0	1	0	0
199	Lepidoptera	Papilionidae	Graphium sp	0	1	0	0
200	Lepidoptera	Nymphalidae	Byblia anvatara	0	1	0	0
201	Lepidoptera	Pieridae	Colotis vesta	0	1	0	0
202	Lepidoptera	Pieridae	Colotis eucharis	0	0	1	0
203	Lepidoptera	Nymphalidae	Charaxes candiope	0	0	2	0
204	Lepidoptera	Nymphalidae	Charaxes zoolina	0	0	1	0

206 Lepidoptera Lycaenidae Hypolycaena philippus 0 0 1 0 207 Lepidoptera Lycaenidae Azanus ubaldus 0 0 1 0 208 Lepidoptera Nymphalidae Charaxes violetta 0 0 1 0 209 Lepidoptera Pieridae Relevois aurota 0 0 1 0 210 Lepidoptera Pieridae Relevois aurota 0 0 1 0 211 Lepidoptera Pieridae Phalanta phalarutha 0 0 1 0 0 212 Lepidoptera Hesprilae Spiadicolas 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1		T	NT		0	0	2	1
100 100 100 100 100 101 Lepidoptera Lycaenidae Azants ubidias 0 0 1 0 200 Lepidoptera Pieridae Colotis regina 0 0 1 0 201 Lepidoptera Pieridae Colotis regina 0 0 1 0 211 Lepidoptera Pieridae Belenois aurota 0 0 1 0 212 Lepidoptera Pieridae Pinacopteryx eriphia 0 0 1 0 213 Lepidoptera Hesperiidae Splatha colotes 0 0 0 1 0 0 214 Mantodea Mantidae Palysplota sp 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0	205	Lepidoptera	Nymphalidae	Neptidopsis fulgurata	0	0	3	1
2016LepidopteraNymphalidaeCharaxes violetta0010209LepidopteraPieridaeColotis regina0010210LepidopteraPieridaeBelenois aurota0010211LepidopteraNymphalidaePhalanta phalantaha0010212LepidopteraPisridaePinacorprey eriphia00100213LepidopteraHesperiidaeSpialia colotes000100214MantodeaMantidaePaloarta phedatus sp0100000216MantodeaMantidaeSphodromantis centralis0100<			•		-			
200LepidopteraPieridaeColoris regina0010210LepidopteraPieridaeBelenois aurota0010211LepidopteraNymphalidaePhalanta phalantha0010212LepidopteraPieridaePinacopteryx eriphia00010213LepidopteraHesperiidaeSpialia colotes000100214MantodeaMantidaeParasphedatus sp0100010216MantodeaMantidaeSpiodromantis centralis0100100216MantodeaMantidaeCatasigerpes margarethae00200100218MantodeaMantidaeChariets sp001100110011001	207		•					
10LepidopteraPieridaeBelenois aurota0010211LepidopteraNymphalidaePhalanta phalantha0010212LepidopteraPieridaePinacopteryx eriphia0010213LepidopteraHesperiidaeSpitalia colotes0010214MantodeaMantidaeParasphedatus sp01000215MantodeaMantidaeSphodromantis centralis01000216MantodeaMantidaeSphodromantis sp000100218MantodeaMantidaeCatasigerpes margarethae00200219MantodeaMantidaeChariets sp001000210MantodeaMantidaeChariets sp001000221NeuropteraMyrmeleontidaeSp10100010222NeuropteraMyrmeleontidaeSp10100100100230OdonataLibellulidaeOrtherrum sp001000100010001000100010000100001 </td <td>208</td> <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	208		• •					-
110LepidopteraNymphalidaePhalanta phalantha0010121LepidopteraPieridaePinacopteryx eriphia00101214MantodeaMantidaeParrasphedalus sp010001215MantodeaMantidaeParrasphedalus sp010001216MantodeaMantidaeSphodromantis centralis010001216MantodeaMantidaeSphodromantis sp001001218MantodeaMantidaeCatasigerpes margarethae002001218MantodeaMantidaeCharieis sp00100101218MantodeaMantidaeCharieis sp00100101219MantodeaMymelopodidaeDaruria sp00100101221NeuropteraMymeloontidaeDaruria sp01001001223OdonataLibellulidaeTrithermis sp22200110010010010010010010010010010001000100	209							
111111012LepidopteraPeridaePinacopteryx eriphia00113LepidopteraHesperiidaeSpialia colotes000114MantodeaMantidaeParrasphedalus sp010016MantodeaMantidaeSphodromantis centralis010016MantodeaMantidaePolyspilota sp001018MantodeaMantidaeCatasigerpes margarethae002020MantodeaMantidaeCharieis sp0010210MantodeaMantidaeCharieis sp0010221NeuropteraMyrmelcontidaesp10100222NeuropteraMyrmelcontidaeorthetrum sp0110223OdonataLibellulidaeOrthetrum sp0100224OdonataLibellulidaeOrthetrum plia0010225OdonataLibellulidaeOrthetrum plia00100226OdonataLibellulidaeOrthetrum plia00100230OrthopteraGryllidasGryllus sp73800231OrthopteraAcrididaeAcrido sp10000233Orthoptera <td>210</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>0</td>	210						1	0
111LeidopteraHesperiidaeSpialia colores001213LepidopteraMantidaeParrasphedalus sp0100214MantodeaMantidaeParrasphedalus sp0100216MantodeaMantidaeSphodromantis centralis0100216MantodeaMantidaePolyspilota sp020010218MantodeaMantidaeCharises paragarethae00200219MantodeaMantidaeCharises paragarethae00200220MantodeaMantidaeCharises paragarethae00100221NeuropteraMyrmeleontidaeSpl010010222NeuropteraMyrmeleontidaeSpl0100100223OdonataLibellulidaeTrithermis sp2220010226OdonataAshinidaeAnax sp00100010226OdonataLibellulidaeOrthertrum caffrum00100000000000000000000000000000000 </td <td>211</td> <td>Lepidoptera</td> <td>• •</td> <td>•</td> <td></td> <td></td> <td>1</td> <td>0</td>	211	Lepidoptera	• •	•			1	0
114ImatodeaMantidaeParrasphedalus sp0100215MantodeaMantidaeSphodromantis centralis0100216MantodeaMantidaePolyspilota sp0200217MantodeaMantidaeSphodromantis sp0010218MantodeaMantidaeCatasigerpes margarethae0020219MantodeaMantidaeCatasigerpes margarethae0020220MantodeaMymeloopidaeDaruria sp0010221NeuropteraMyrnelcontidaesp10100222OdonataLibellulidaeTrithermis sp2220223OdonataLibellulidaeOrthetrum sp01110225OdonataLibellulidaeOrthetrum sp01010226OdonataLibellulidaeOrthetrum julia00100228OrthopteraGryllidaeGrylliday spp73800230OrthopteraAcrididaeAcida sp11000231OrthopteraAcrididaeAcida sp11000232OrthopteraGryllidaeGryllus sp73800233OrthopteraAcridi	212	Lepidoptera	Pieridae	Pinacopteryx eriphia	0		1	0
11 1215MantidaeSphodromantis centralis0100216MantodeaMantidaePolyspilota sp0200217MantodeaMantidaeSphodromantis sp0010218MantodeaMantidaeCatasigerpes margarethae0020219MantodeaMantidaeCharieis sp0020220MantodeaHymenopodidaeDanuria sp0010221NeuropteraMyrmeleontidaesp10100222NeuropteraMyrmeleontidae0120223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0111225OdonataAeshinidaeAnax sp0010229OthopteraGryllidaeOrthetrum julia0010230OrthopteraGryllidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAcrididaeSp21100233OrthopteraAcrididaeAcridyus sp1000234OrthopteraAcrididaeAcridos sp1000233OrthopteraAcrididaeAcridos sp10002310 <td< td=""><td>213</td><td>Lepidoptera</td><td>Hesperiidae</td><td>Spialia colotes</td><td>0</td><td>0</td><td>0</td><td>1</td></td<>	213	Lepidoptera	Hesperiidae	Spialia colotes	0	0	0	1
110MantidaePolyspilota sp0200217MantodeaMantidaeSphodromantis sp0010218MantodeaMantidaeCatasigerpes margarethae0020219MantodeaMantidaeCharieis sp0020220MantodeaHymenopodidaeDanuria sp0010221NeuropteraMyrmeleontidaesp10100222NeuropteraMyrmeleontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp00110225OdonataLibellulidaeOrthetrum caffrum00100226OdonataLibellulidaeOrthetrum julia00100223OtnotataLibellulidaeOrthetrum julia00100224OdonataLibellulidaeOrthetrum julia00100225OdonataLibellulidaeOrthetrum julia001000226OdonataLibellulidaeOrthetrum julia001000230OrthopteraTettigonidaeThyridorphoptrum sp10000231Orthoptera <td>214</td> <td>Mantodea</td> <td>Mantidae</td> <td>Parrasphedalus sp</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td>	214	Mantodea	Mantidae	Parrasphedalus sp	0	1	0	0
11MantodeaMantidaeSphodromantis sp0010218MantodeaMantidaeCatasigerpes margarethae0020210MantodeaMantidaeCharieis sp0010220MantodeaHymenopodidaeDanuria sp0010221NeuropteraMyrmelcontidaesp10100222NeuropteraMyrmelcontidae01000223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0110225OdonataLibellulidaeOrthetrum caffrum0010226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum caffrum0010228OrthopteraGryllidaeGryllus sp61160230OrthopteraPyrgomophidaeChrotogonus hemipterus1100233OrthopteraAcrididaeAcridy sp1200234OrthopteraAcrididaeAcridy sp1000235OrthopteraAcrididaeAcridy sp1000236OrthopteraAcrididaeAcridy sp1000 <t< td=""><td>215</td><td>Mantodea</td><td>Mantidae</td><td>Sphodromantis centralis</td><td>0</td><td>1</td><td>0</td><td>0</td></t<>	215	Mantodea	Mantidae	Sphodromantis centralis	0	1	0	0
111112218MantodeaMantidaeCatasigerpes margarethae0020219MantodeaMantidaeCharieis sp0010220MantodeaHymenopodidaeDanuria sp0010221NeuropteraMyrmeleontidaesp10100222NeuropteraMyrmeleontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0111225OdonataAeshinidaeAnax sp0010227OdonataLibellulidaeOrthetrum caffrum0010228OthoataLibellulidaeOrthetrum julia0010230OrthopteraGryllidaeGryllus sp61160231OrthopteraTetigonidaeThyridorphoptrum sp1000232OrthopteraGryllidaeGryllulaus sp7380233OrthopteraAcrididaeAciolopus simulatrix1000234OrthopteraAcrididaeAciolopus simulatrix1000234OrthopteraAcrididaeAcridus sp1100235OrthopteraAcrididaeAcridus sp1	216	Mantodea	Mantidae	Polyspilota sp	0	2	0	0
11010010219MantodeaHymenopodidaeDanuria sp0010220NeuropteraMyrmeleontidae $sp1$ 0100221NeuropteraMyrmeleontidae $sp1$ 0100222NeuropteraMyrmeleontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0111226OdonataAeshinidaeAnax sp00110227OdonataLibellulidaeOrthetrum caffrum00100228OtonataLibellulidaeOrthetrum iulia001000230OtnataLibellulidaeOrthetrum ipilia001000231OrthopteraGryllidaeGryllus sp611600 </td <td>217</td> <td>Mantodea</td> <td>Mantidae</td> <td>Sphodromantis sp</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td>	217	Mantodea	Mantidae	Sphodromantis sp	0	0	1	0
11.1 220MantodeaHymenopodidaeDanuria sp0010221NeuropteraMyrmelcontidae $sp1$ 0100222NeuropteraMyrmelcontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0120225OdonataAeshinidaeAnax sp00110226OdonataLibellulidaeOrthetrum caffrum00100227OdonataLibellulidaeOrthetrum julia00100228OrthopteraGryllidaeGryllus sp6116000230OrthopteraTettigonidaeThyridorphoptrum sp10000231OrthopteraAcrididaeAiolopus simulatrix10000232OrthopteraAcrididaeCyrtacanthacris tatarica11000233OrthopteraAcrididaeSp2110000234OrthopteraAcrididaeAcridia sp100000235OrthopteraAcrididaeAcridia sp100000236OrthopteraAcrididaeAcridia sp100 <t< td=""><td>218</td><td>Mantodea</td><td>Mantidae</td><td>Catasigerpes margarethae</td><td>0</td><td>0</td><td>2</td><td>0</td></t<>	218	Mantodea	Mantidae	Catasigerpes margarethae	0	0	2	0
221NeuropteraMyrmeleontidae $sp1$ 0100222NeuropteraMyrmeleontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0120225OdonataAeshinidaeAnax sp00111226OdonataLibellulidaeOrthetrum caffrum00100227OdonataLibellulidaeOrthetrum julia0010010228OrthopteraGryllidaeGryllus sp6116000 </td <td>219</td> <td>Mantodea</td> <td>Mantidae</td> <td>Charieis sp</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td>	219	Mantodea	Mantidae	Charieis sp	0	0	2	0
221NeuropteraMyrneleontidae0100223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0120225OdonataAeshinidaeAnax sp0011226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum caffrum0010228OtdonataLibellulidaeOrthetrum caffrum0010229OrthopteraGryllidaeGryllus sp61160230OrthopteraTettigonidaeThyridorphoptrum sp1000231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200233OrthopteraAcrididaeAcrida sp1100234OrthopteraAcrididaeSp21100235OrthopteraAcrididaeAcrotylus sp0200234OrthopteraAcrididaeAcrididaeSp21100235OrthopteraAcrididaeAcrididaeAcrotylus sp0420 <td>220</td> <td>Mantodea</td> <td>Hymenopodidae</td> <td>Danuria sp</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td>	220	Mantodea	Hymenopodidae	Danuria sp	0	0	1	0
223OdonataLibellulidaeTrithermis sp2220224OdonataLibellulidaeOrthetrum sp0120225OdonataAeshinidaeAnax sp0011226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum caffrum0010228OtdonataLibellulidaeOrthetrum caffrum0010229OrthopteraGryllidaeGryllus sp61160230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000233OrthopteraGryllidaeGryllulus sp7380234OrthopteraAcrididaeAcrida sp1200233OrthopteraAcrididaeAcrida sp1000233OrthopteraAcrididaeSp21100235OrthopteraAcrididaeAcrotylus sp0200236OrthopteraGryllidaeGymnogryllus sp0420235OrthopteraGryllidaeAcridylus sp0100236OrthopteraGryllidaeApteroscirtus sp0100 </td <td>221</td> <td>Neuroptera</td> <td>Myrmeleontidae</td> <td>sp1</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td>	221	Neuroptera	Myrmeleontidae	sp1	0	1	0	0
224OdonataLibellulidaeOrthetrum sp0120225OdonataAeshinidaeAnax sp0011226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum caffrum0010228OrthopteraGryllidaeGryllus sp61160229OrthopteraTettigonidaeThyridorphoptrum sp10000230OrthopteraPyrgomophidaeChrotogonus hemipterus11000231OrthopteraAcrididaeAiolopus simulatrix10000232OrthopteraGryllidaeGryllulus sp73800233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeSp21100235OrthopteraAcrididaeSp21100236OrthopteraGryllidaePhaeophilacris sp0200237OrthopteraGryllidaeGymnogryllus sp0420236OrthopteraAcrididaeSp30100237OrthopteraAcrididaeSp30100238OrthopteraGryllidaeGymnogryllus sp01	222	Neuroptera	Myrmeleontidae		0	1	0	0
225OdonataAeshinidaeAnax sp0011226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum julia0010228OrthopteraGryllidaeGryllus sp61160229OrthopteraTettigonidaeThyridorphoptrum sp1000230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeSp21100235OrthopteraAcrididaeAcrotylus sp0200236OrthopteraGryllidaeGymnogryllus sp0420237OrthopteraGryllidaeAcrotylus sp0100238OrthopteraGryllidaeAcrotylus sp0100239OrthopteraGryllidaeApteroscirtus sp0100239OrthopteraAcrididaesp301100240OrthopteraAcrididaesp30110 <t< td=""><td>223</td><td>Odonata</td><td>Libellulidae</td><td>Trithermis sp</td><td>2</td><td>2</td><td>2</td><td>0</td></t<>	223	Odonata	Libellulidae	Trithermis sp	2	2	2	0
226OdonataLibellulidaeOrthetrum caffrum0010227OdonataLibellulidaeOrthetrum julia0010228OrthopteraGryllidaeGryllus sp61160229OrthopteraTettigonidaeThyridorphoptrum sp1000230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaeAcrotylus sp1000235OrthopteraGryllidaePhaeophilacris sp0200236OrthopteraGryllidaePhaeophilacris sp0200236OrthopteraGryllidaeAcrotylus sp0420237OrthopteraGryllidaeApteroscirtus sp0100236OrthopteraAcrididaeSp30110239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaeSp30	224	Odonata	Libellulidae	Orthetrum sp	0	1	2	0
227OdonataLibellulidaeOrtherum julia0010228OrthopteraGryllidaeGryllus sp61160229OrthopteraTettigonidaeThyridorphoptrum sp1000230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcridida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraGryllidaePhaeophilacris sp0200233OrthopteraAcrididaesp21100234OrthopteraAcrididaesp21100235OrthopteraAcrididaeAcrotylus sp0200236OrthopteraGryllidaePhaeophilacris sp0200237OrthopteraGryllidaeApteroscirtus sp0100238OrthopteraTettigonidaeApteroscirtus sp0110240OrthopteraAcrididaesp3011 <t< td=""><td>225</td><td>Odonata</td><td>Aeshinidae</td><td>Anax sp</td><td>0</td><td>0</td><td>1</td><td>1</td></t<>	225	Odonata	Aeshinidae	Anax sp	0	0	1	1
228OrthopteraGryllidaeGryllus sp61160229OrthopteraTettigonidaeThyridorphoptrum sp1000230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100241OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDiacomena superba0100241OrthopteraTettigonidaeDiacomena superba0100241OrthopteraTettigonidaeDiacomena superba0100241OrthopteraTettigonidaeDiacomena superba0100241OrthopteraTettigonidaeDiacom	226	Odonata	Libellulidae	Orthetrum caffrum	0	0	1	0
229OrthopteraTettigonidaeThyridorphoptrum sp100230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp0200237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeApteroscirtus sp0100239OrthopteraAcrididaesp301100241OrthopteraAcrididaesp30100241OrthopteraTettigonidaeDioncomena superba0100	227	Odonata	Libellulidae	Orthetrum julia	0	0	1	0
230OrthopteraPyrgomophidaeChrotogonus hemipterus1100231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp100237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeApteroscirtus sp0100239OrthopteraTettigonidaeApteroscirtus sp0110241OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	228	Orthoptera	Gryllidae	Gryllus sp	6	11	6	0
231OrthopteraAcrididaeAiolopus simulatrix1000232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp100237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	229	Orthoptera	Tettigonidae	Thyridorphoptrum sp	1	0	0	0
232OrthopteraGryllidaeGryllulus sp7380233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp1000237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100241OrthopteraTettigonidaeDioncomena superba0100	230	Orthoptera	Pyrgomophidae	Chrotogonus hemipterus	1	1	0	0
233OrthopteraAcrididaeAcrida sp1200234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp100237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	231	Orthoptera	Acrididae	Aiolopus simulatrix	1	0	0	0
234OrthopteraAcrididaeCyrtacanthacris tatarica1100235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp1000237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraTettigonidaeDioncomena superba0100	232	Orthoptera	Gryllidae	Gryllulus sp	7	3	8	0
235OrthopteraAcrididaesp21100236OrthopteraAcrididaeAcrotylus sp1000237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	233	Orthoptera	Acrididae	Acrida sp	1	2	0	0
236OrthopteraAcrididaeAcrotylus sp1000237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	234	Orthoptera	Acrididae	Cyrtacanthacris tatarica	1	1	0	0
237OrthopteraGryllidaePhaeophilacris sp0200238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	235	Orthoptera	Acrididae	sp2	1	1	0	0
238OrthopteraGryllidaeGymnogryllus sp0420239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	236	Orthoptera	Acrididae	Acrotylus sp	1	0	0	0
239OrthopteraTettigonidaeApteroscirtus sp0100240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	237	Orthoptera	Gryllidae	Phaeophilacris sp	0	2	0	0
240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	238	Orthoptera	Gryllidae	Gymnogryllus sp	0	4	2	0
240OrthopteraAcrididaesp30110241OrthopteraTettigonidaeDioncomena superba0100	239	Orthoptera	Tettigonidae	Apteroscirtus sp	0	1	0	0
241OrthopteraTettigonidaeDioncomena superba0100		Orthoptera	Acrididae	sp3	0	1	1	0
		Orthoptera	Tettigonidae	Dioncomena superba	0	1	0	0
	242	Orthoptera	Acrididae	sp1	0	3	0	0

243	Orthoptera	Acrididae	sp4	0	1	0	0
243	Orthoptera	Tettigonidae	Eugasteroides loricatus	0	0	1	0
244	Phasmatodea	Phasmidae	Gratidia sp	0	1	0	0
245	Polydesmida	Polydesmidae	sp1	0	2	0	0
247	Solifugae	-	•	0	2	0	0
248	Spirostreptida	Spirostreptidae	sp1	0	3	3	0
249	Spirostreptida	Spirostreptidae	sp2	0	2	0	0
250	Stylommatophora	Halolimnohelicidae	Halolimnohelix sp	16	2	0	0
251	Stylommatophora	Ceractuidae	Cerastua sp	1	0	0	0

CHAPTER THREE:

SURVEY OF BIRDS OF KAYA KAUMA FOREST, KILIFI COUNTY

Alex¹ and John Musina²

¹Arabuko Sokoke Guides Association, P.O. Box xxx Gede.

²Zoology Dept. of the National Museums of Kenya, P.O. Box 40658 00100 GPO Nairobi. Email: mhornbill@yahoo.com.

3.1 Summary

Kaya Kauma is part of a mosaic of sacred forest fragments, along the Kenya coast that mesh into an ecosystem that harbor important habitats for birds. The kaya is also a significant stop-over and dispersal site for migratory birds. An ornithological survey of this site was carried out in November 2018. Timed Species Counts (TSCs) and opportunistic birding were used to estimate the relative abundance of birds. A total of seventy-four (74) species from thirty-six (36) families were recorded, of which two (2) species, Southern Banded Snake Eagle (Circaetus fasciolatus) and Fischer's Turaco (Tauraco fischeri) are classified by the IUCN as Near Threatened. Twentyseven (27) forest dependent species were observed. Two (2) of which were true forest birds characteristic of the interior of undisturbed forest and breed exclusively in the forest. These species would go extinct in the absence of the forest. These were; Black-headed Apalis (Apalis melanocephala) and Olive Sunbird (Cyanomitra olivacea). Eleven (11) migratory species were recorded. Three (3) were long distance palaearctic migrants migrating between Africa and Eurasia. They were; Eurasian Bee-eater Merops apiaster, Eurasian Golden Oriole (Oriolus oriolus) and Spotted Flycatcher (Muscicapa striata). Two (2) species were afrotropic migrants, meaning that they migrate within Africa. These were; White-throated Bee-eater (Merops albicollis) and Northern Carmine Bee-eater, (Merops nubicus). Kaya Kauma is rich in avifaunal diversity occurring in the kaya forest and the surrounding farmlands. These habitat types play a fundamental role as stop-over or wintering sites for migratory birds. We recommend an integrated communitybased species and habitat monitoring program – involving specifically the Kaya elders as part of the local community. We also recommend urgent conservation measures to reduce the ever increasing threat of clearing of vegetation for farming along the riparian gallery forests. We also

propose an elaborate plan to manage water abstraction from Nzovuni River and to control and if possible eradicate the House Crow.

3.2 Introduction

Kaya is a sacred forest of the Mijikenda people in the coastal region of Kenya. The forest is considered to be an intrinsic source of ritual power and the origin of cultural identity. It is also a place of prayer for members of the particular ethnic group. The concept of Kaya forest started way back in the 16th century and got over in the 1940. The remains of these forests are still there though.

By and large, these forest habitats along the Kenya coast, form part of the East African coastal forests biodiversity hotspot, an area known for globally significant levels of avian species richness and endemism. (Myers *et al.*, 2000). The richness of biodiversity in the Kaya forests was recognized in the 1980s (Olson, 2010) and the sacred forests are prominent on hills and other strategic sites that blend culture and nature.

Traditional restrictions were placed on access and the utilization of natural forest resources resulting to the kayas preserving and sustaining biodiversity. Kaya forest patches are small in size, ranging in area from 10 to 400 hectares. As part of the East African Coastal Biome endemic bird area, these forests harbor rare and endemic species of birds.

This study aimed at documenting the different bird species found in the Kaya Kauma forest. Kaya Kauma is situated in the Jaribuni location, Ganze Division in the Kilifi County of the Coastal Province. It is primarily a Kaya of the Kauma people and occupies an area of over 100 hectares within the geographic co-ordinates of 03°:37'14''south and 39°44'10''east. Kaya Kauma is a primary Kaya forest sitting at 120 m above the sea level. Its size is over 100 ha in area (Ang *et al.* 2008).

The forest type exhibits a deciduous forest which slopes down in the north to Nzovuni River. Kauma forest slopes down at the back of Jaribuni village to Nzovuni River on the west. The surrounding areas have scrubby vegetation and are inhabited by villages and farmland.

The forest type is deciduous forest and the soil exhibits a rich content of iron-ore. The forest type exhibits a deciduous forest which slopes down in the north to Nzovuni River. Kauma form the

largest community living adjacent to the Kaya Kauma accounting for 75% population and the remaining 25% is composed of eight Mijikenda communities (Rajat *et al.*, 2017).

Kaya Kauma is relatively well conserved with no illegal activities or logging of trees and poaching of mammals. This is because social taboos prohibited the cutting and removal of trees and other forest vegetation for all but a few select purposes. This forest site, still stands as a home for ancestors and is maintained by a council of elders (Abungu *et al.*, 2012). It is because of the forests' protected status, that it acts as a repository of biodiversity, harboring many rare species of birds.

3.3 Materials and methods

We used both qualitative and quantitative methods to build a species list and to derive species richness and diversity in all the transects that we surveyed. Two main habitat types were identified within Kaya Kauma; forest and forest edge. The habitat types were characterized according to the main vegetation type present.

Qualitative Methods

Opportunistic Birding

We searched for birds in the forest and farmland. We recorded the species we saw or heard, the habitat in which they occurred and the duration we spent birding. We used these data to build a comprehensive species list for the site.

Quantitative Methods

Timed Species Counts (TSCs)

Timed Species Counts were performed over a fixed time period of 60 min and over fixed routes (1 km long transect) to sample two broad habitat types representative of Kaya Kauma: forest and farmland. Observers walked slowly and quietly along the transect, recording all birds seen ("s") or heard ("h") within the survey unit on a standard survey form. The TSCs were carried right after sunrise for four hours (c. 0600 h – 1000h). At each TSC, the weather condition, the habitat type and the start and end coordinates were recorded.

3.4 Results

Overall, seventy-four (74) bird species from thirty-six (36) families were recorded (Figure 8; Appendix 3.1). As shown in (Figure 8) below, the sampling effort was sufficient to record most of the bird species present because the species richness curve almost leveled off.

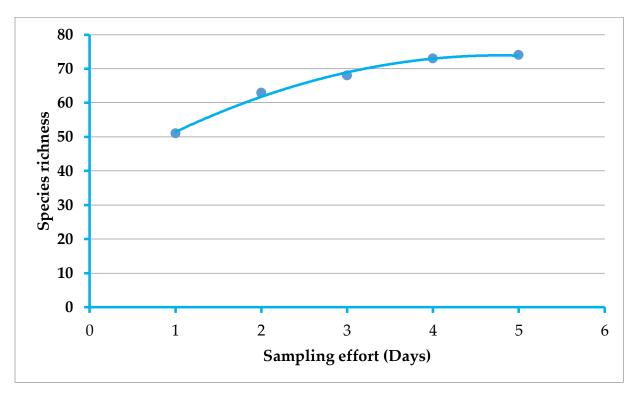


Figure 8 Species accumulation curve as an estimate of bird species richness in two habitat types, forest and forest edge, of Kaya Kauma.

In total, two hundred and ninety-one (291) individuals were counted with the highest number of ninety-two (92) individuals recorded on Day 1 and the lowest number of thirty-seven (37) on Day 5 (Figure 9). The Tropical Boubou was the most abundant with eighteen (18) individuals counted (Appendix 3.2).

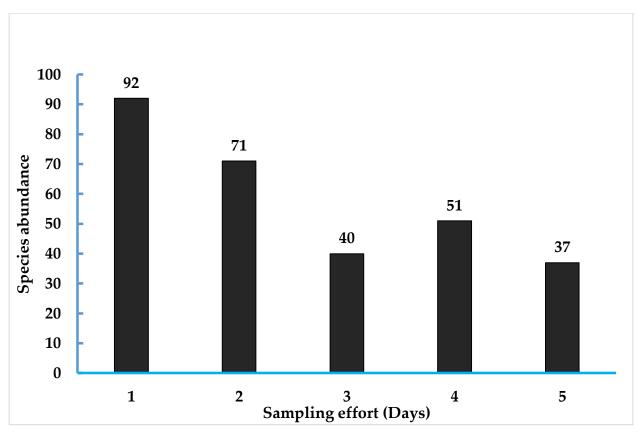


Figure 9 Bird species abundance recorded in Kaya Kauma Forest from 24th - 28th November 2018.

Two (2) species classified by the IUCN as Near Threatened were recorded. These were; Southern Banded Snake Eagle, *Circaetus fasciolatus* and Fischer's Turaco (*Tauraco fischeri*) (Figure 10).

Figure 10 A forest specialist, Fischer's Turaco, Tauraco fischeri, is Near Threatened in the IUCN redlist.

A total of eleven (11) migratory species were recorded. Out of this, three (3) were long distance palaearctic migrants, that is, they migrate between Africa and Eurasia. These were; Eurasian Beeeater *Merops apiaster*, Eurasian Golden Oriole *Oriolus oriolus* and Spotted Flycatcher *Muscicapa striata*. In addition, two (2) species were afrotropic migrants, meaning that they migrate within Africa. These were; White-throated Bee-eater, *Merops albicollis* and Northern Carmine Bee-eater, *Merops nubicus*.

The forest habitat had sixty-three (63) species while the forest edge had fifty-eight (58) species. However, more than half of the species found in the forest were also recorded in the forest edge (Fig. 11).

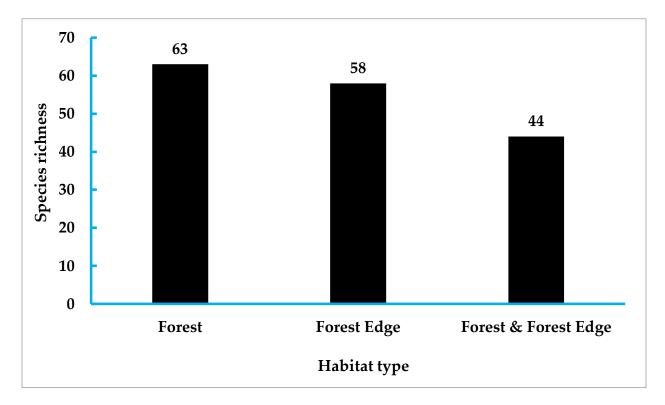


Figure 11 Bird species richness recorded in the forest and forest edge of Kaya Kauma.

According to Bennun & Dranzoa (1996), forest specialists are true forest birds, characteristic of the interior of undisturbed forest. They may persist in secondary forest and forest patches if their particular ecological requirements are met. They are rarely seen in non-forest habitats and breed exclusively in the forest. In this study, twenty-seven (27) species were forest dependent, two (2)

of which were forest specialists. They were; Black-headed Apalis *Apalis melanocephala* and Olive Sunbird *Cyanomitra olivacea*. In addition, fifteen (15), were forest generalists and ten (10) were forest visitors from the neighboring farmlands (*see* Figures 12,13 & 14; Appendix 3.1)

Figure 12 Some of the forest dependent birds found in Kaya Kauma. The Yellow-bellied Greenbul, Chlorocichla flaviventris centralis (left) and Eastern Bearded Scrub Robin, Cercotrichas quadrivirgata.

Figure 13 A forest generalist, Eastern Nicator (*Nicator gularis*) was frequent both in the forest and the forest edge.

Figure 14 White-browed Coucal Centropus superciliosus and Dark-backed Weaver Ploceus bicolor frequently visit forest edges and farmlands.

3.5 Discussion

Even though Kaya Kauma seems not to face imminent threats from human activities such as logging and charcoal burning, the encroaching farmlands put forest and the bird species at risk. The once large continuum of high altitude forest - riparian gallery forest along Nzovuni river is now fragmented. Bird populations that once freely moved between these two major habitat types are now split into isolated units - meaning that species may have limited interchange with each other (e.g. Lens *et al.*, 1999).

In addition, expansion of agricultural activities means that the remnant kaya forest fragment at the top has relatively more edge and less interior. Therefore, some forest specialists are likely to have gone locally extinct. As these fragments diminish so do they become vulnerable to habitat degradation and easier for predators or parasites to penetrate. In fact, in this study only two **true** forest species were recorded.

The high number of species found both in the forest and the forest edge could be due to the limited dispersal capabilities of these species through the modified nearby farmland habitats.

Threats

Habitat degradation has negative effects on the birds of Kaya Kauma. Clearly, the number of forest-specialist species has declined as the structure of the surrounding habitat is modified (see Bennun & Njoroge ,1999). In the high altitude kaya, threats might be inconspicuous but in the surrounding low altitude riparian gallery forests, agriculture, grazing and selective logging have opened the kaya forest edges. The forest edges consequently increase species diversity at the expense of the sensitive forest-interior birds, especially the threatened species (Collar *et al.* 1994; Bennun & Njoroge 1996).

The exploitation of the riparian gallery forests for poles, fuel wood and to a minimal extent for medicinal plants have a negative effect on birds. For instance, collection of fallen wood, harvesting deadwood affects insect populations, and thus birds too (Davies & Hoffman, 2004). Hole-nesting birds such as Mombasa Woodpecker and Trumpeter Hornbill rely heavily on standing deadwood or old, over-mature trees where nest-sites can be found or excavated.

Some invasive species such as the House Crow have negatively affected the bird diversity of Kaya Kauma. They compete for food and nesting sites with native species and to some extent predating chicks. This has drastically reduced the nesting success of some native species.

Potential socio-economic mitigation

Sustainability usually means a particular trade-off between economic benefits and biodiversity loss. Deciding whether such a trade-off is acceptable or not requires detailed ecological knowledge about the species of conservation concern and a monitoring program to assess the effects of forest-use, both local (e.g. Hall & Rodgers, 1986) and commercial.

The high altitude sacred forest and the riparian gallery forest can in themselves be used as management and conservation tools (Bennun & Njoroge, 1999; e.g. Bennun, 1999). At one level, the birds in these habitats are likely to be the easiest group to monitor if changes in biodiversity need to be assessed. The Kenya Forest Service should initiate a long term monitoring program enhanced through partnership with other stakeholders.

At another level, birds provide an excellent focus for conservation education and action. Some of the possible conservation actions include management strategies to mitigate the effects of fragmentation and degradation of the riparian gallery forests. For instance, there is need to restore or maintain habitat corridors between the highland forest and the lowland by protecting the riparian land. The ultimate aim is to effectively protect both habitats from disturbance.

Birdwatching has great tourism potential in Kenya. The activity can provide a source of local employment and revenue generation. Kaya Kauma and the surrounding are potential birdwatching sites.

3.6 Conclusions and recommendations

After this survey, we made the following conclusions:

- That there is a connection between the kaya forest, the riparian gallery forest and the farmlands. Some birds simply use all the habitats to find food or roost.
- That the condition of the kaya forest upstream expressly determines the condition of the lowland habitats. Therefore, any interference with the catchment area vegetation will affect birds in other habitats.
- That birds found in the two habitat types are in danger of anthropogenic activities.
- The riparian vegetation along the rivers is an important corridor and provides feeding and dispersal sites for some species.
- That the House Crow is a pest with serious negative impacts on native species.

We therefore recommend the following;

- An integrated monitoring scheme for the forest with a possible starting point being regular surveys inside the forest and at the forest edge. Kenya Forest Service can achieve this by forging closer cooperation with research organizations active in the area such as the National Museums of Kenya (NMK).
- Urgent conservation measures to stop the imminent destruction of the riparian gallery forests.
- Control the population and if possible eradicate the House Crow.

3.7 References

- Abungu, G.O.& Githitho A. (2012). Homelands of the mijikenda people: Sacred Mijikenda Kaya forests, Kenya. In: World Heritage: Benefits Beyond Borders. 2012:147-157. doi:10.1017/CBO9781139567657.017.
- Ang, T. W., Have, H. T., Solbakk, J. H., & Nys, H. (2008). UNESCO Global Ethics Observatory: database on ethics related legislation and guidelines. *Journal of Medical Ethics*, 34(10), 738–741. <u>https://doi.org/10.1136/jme.2007.022848</u>
- Bennun, L., C. Dranzoa and Pomeroy, D. (1996). The forest birds of Kenya and Uganda. Journal of the East African Natural History Society 85: 23 -48.
- Bennun, L.A. (1999) Threatened birds and rural communities: Balancing the equation. In: Proc. 22 Int. Ornithol. Congr., Durban: pp 1546–1555 (Ed. by N.J. Adams & R.H. Slotow). BirdLife South Africa, Johannesburg.
- Bennun, L.A. and Njoroge, P. (1999) Important Bird Areas in Kenya. East African Natural History Society. Nairobi, Kenya.
- Bennun, L.A. and Njoroge, P. (eds) .(1996) Birds to Watch in East Africa: A preliminary Red Data List. Research Reports of the Centre for Biodiversity, National Museums of Kenya: Ornithology 2.
- Collar, N.J., Crosby, M.J. and Stattersfield, A.J. (1994) *Birds to watch 2: The world list of threatened birds*. BirdLife Conservation series No.4. Cambridge, BirdLife International.
- Davies, G.and Hoffman M. (Eds). (2nd Edn) (2004) *African Forest Biodiversity: A field survey manual for vertebrates*. Earthwatch Europe, Oxford, UK.
- Hall, J.B. & Rodgers, W.A. (1986) Pole cutting pressure in Tanzanian forests. *For. Ecol. Mgmt* 14:133–140.
- Lens, L. & van Dongen, S. (1999) Evidence for organism-wide asymmetry in five bird species of a fragmented afrotropical forest. Proc. R. Soc. Lond., Ser. B 266: 1055–1060.
- Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853.
- Olson, D. (2010). A decade of conservation by the Critical Ecosystem Partnership Fund 2001–2010: an independent evaluation of CEPF's global impact. *Conservation Earth*.

Rajat, J., Jefwa, J., & Mwafaida, J. (2017). Survey on Indigenous Food Plants of Kaya Kauma and Kaya Tsolokero in Kilifi County Kenya. *Journal of Life Sciences*, 11, 82–90

3.8 Appendices

Names and Sequence: According to the *Checklist of the Birds of Kenya*, 4th Ed, Bird Committee of EANHS, 2009.

Location: Kaya Kauma forest, the riparian gallery forests along Nzovuni river and the surrounding farmland.

Forest dependency categories (Bennun et al., 1996):

- i) Forest specialist species (**FF species**): These are true forest birds, characteristic of the interior of undisturbed forest. They may persist in secondary forest and forest patches if their particular ecological requirements are met. They are rarely seen in non-forest habitats and breed exclusively in the forest.
- Forest generalist species (F species): May occur in undisturbed forest but are also regularly found in forest strips, edges and gaps, where they are likely to be more common than in the interior forest. They breed within the forest.
- iii) Forest visitors (f species): these are often recorded in the forest but are not dependent on it. They are almost more common in non-forest habitats where they breed.

Migratory Status: \mathbf{AM} = Afrotropical Migrant; \mathbf{OM} = Migrant from the Oriental region; \mathbf{PM} = Migrant from Palaearctic region; \mathbf{MM} = Migrant from Malagasy region; in lower case migrants of that category may occur alongside resident, non-migratory individuals.

IUCN categories: NT = Near Threatened

	Common Name	Scientific Name	IUCN Status	Migratory Status	Forest Dependency
	Numididae: guineafowl				
1	Helmeted Guineafowl	Numida meleagris			
	Phasianidae: quails, francolins, spurfowl and allies				

Appendix 3.1 A checklist of birds of Kaya Kauma, November 2018.

2	Crested Francolin	Francolinus sephaena			
	Ciconiidae: storks				
3	Woolly-necked Stork	Ciconia episcopus			
	Threskiornithidae: ibises and	spoonbills			
4	Hadada Ibis	Bostrychia hagedash			
	Ardeidae: herons, egrets and bitterns				
5	Black-headed Heron	Ardea melanocephala			
	Accipitridae: diurnal birds of	prey other than falcons			
6	Southern Banded Snake Eagle	Circaetus fasciolatus	NT		F
7	African Goshawk	Haliaeetus vocifer			F
8	Great Sparrowhawk	Accipiter melanoleucus			F
9	Lizard Buzzard	Kaupifalco monogrammicus			f
10	Wahlberg's Eagle	Aquila wahlbergi		Am	
	Columbidae: pigeons and doves				
11	Red-eyed Dove	Streptopelia semitorquata			f
12	Ring-necked Dove	Streptopelia capicola			f
13	Emerald-spotted Wood Dove	Turtur chalcospilos			f
14	Tambourine Dove	Turtur tympanistria			F
15	African Green Pigeon	Treron calvus			F
	Psittacidae: lovebirds and parrots				
16	Brown-headed Parrot	Poicephalus cryptoxanthus			F
	Musophagidae: turacos				
17	Fischer's Turaco	Tauraco fischeri	NT		F
	Cuculidae: cuckoos and coucals				
18	Jacobin Cuckoo	Clamator jacobinus		ат, рт, от	
19	Thick-billed Cuckoo	Pachycoccyx audeberti			f
20	Klaas's Cuckoo	Chrysococcyx klaas			f
21	Yellowbill	Ceuthmochares aereus		Am	F
22	White-browed Coucal	Centropus superciliosus			
	Strigidae: typical owls				
23	Verreaux's Eagle Owl	Bubo lacteus			
24	African Wood Owl	Strix woodfordii			F

	Apodidae: Swifts			
25	African Palm Swift	Cypsiurus parvus		
26	Little Swift	Apus affinis		
	Coliidae: mousebirds			
27	Speckled Mousebird	Colius striatus		
	Coraciidae: rollers			
28	Lilac-breasted Roller	Coracias caudatus	Am	
29	Broad-billed Roller	Eurystomus glaucurus	am, mm	
	Meropidae: bee-eaters			
30	White-throated Bee-eater	Merops albicollis	AM	f
31	Eurasian Bee-eater	Merops apiaster	PM	f
32	Northern Carmine Bee-eater	Merops nubicus	AM	
	Phoeniculidae: wood- hoopoes			
33	Green Wood-hoopoe	Phoeniculus purpureus		
	Bucerotidae: hornbills			
34	Crowned Hornbill	Tockus alboterminatus		f
35	Trumpeter Hornbill	Bycanistes bucanitor		F
	Capitonidae: barbets and tinkerbirds			
36	Red-fronted Tinkerbird	Pogoniulus pusillus		
	Indicatoridae: honeyguides			
37	Greater Honeyguide	Indicator indicator		f
	Picidae: wrynecks and woodpeckers			
38	Mombasa Woodpecker	Campethera mombassica		F
	Malaconotidae: helmetshrikes	, bushshrikes, tchagras and puffbacks		
39	Retz's Helmetshrike	Prionops retzii		f
40	Grey-headed Bushshrike	Malaconotus blanchoti		
41	Gorgeous Bushshrike	Chlorophoneus viridis		F
42	Black-crowned Tchagra	Tchagra senegalus		
43	Black-backed Puffback	Dryoscopus cubla		F
44	Tropical Boubou	Laniarius aethopicus		f
	Oriolidae: orioles			
45	Eurasian Golden Oriole	Oriolus oriolus	PM	f

46	Black-headed Oriole	Oriolus larvatus		f
	Dicruridae: drongos			
47	Common Drongo	Dicrurus adsimilis		
	Corvidae: crows and allies			
48	House Crow	Corvus splendens		
	Hirundinidae: saw-wings, swa	allows and martins		
49	Lesser Striped Swallow	Cecropis abyssinica		
	Cisticolidae: cisticolas and allies			
50	Tawny-flanked Prinia	Prinia subflava		f
51	Black-headed Apalis	Apalis melanocephala		FF
52	Grey-backed Camaroptera	Camaroptera brachyuran		f
	Pycnonotidae: bulbuls			
53	Common Bulbul	Pycnonotus barbatus		
54	Zanzibar Greenbul	Andropadus importunus		
55	Yellow-bellied Greenbul	Chlorocichla flaviventris		F
56	Northern Brownbul	Phyllastrephus strepitans		f
57	Eastern Nicator	Nicator gularis		F
	Timaliidae: illadopses, babble	ers and chatterers		
58	Scaly Babbler	Turdoides squamulata		
	Sturnidae: starlings and oxpeckers			
59	Black-bellied Starling	Lamprotornis corruscus		F
60	African Bare-eyed Thrush	Turdus tephronotus		
	Muscicapidae: chats, wheatea	rs and Old World flycatchers		
61	White-browed Robin Chat	Cossypha heuglini		
62	Red-capped Robin Chat	Cossypha natalensis	Am	F
63	Bearded Scrub Robin	Cercotrichas quadrivirgata		f
64	Spotted Flycatcher	Muscicapa striata	PM	
	Nectariniidae: sunbirds			
65	Collared Sunbird	Hedydipna collaris		F
66	Olive Sunbird	Cyanomitra olivacea		FF
	Passeridae: sparrow weavers,	Old World sparrows and petroni	as	
67	Grey-headed Sparrow	Passer griseus		

	Ploceidae: weavers, bishops	and widowbirds	
68	Grosbeak Weaver	Amblyospiza albifrons	f
69	Dark-backed Weaver	Ploceus bicolor	F
	Estrildidae: waxbills		
70	Red-cheeked Cordon-bleu	Uraeginthus bengalus	
71	Peters's Twinspot	Hypargos niveoguttatus	F
72	Bronze Mannikin	Spermestes cucculatus	
	Motacillidae: wagtails, long	claws and pipits	
73	African Pied Wagtail	Motacilla aguimp	
	Fringillidae: canaries, citril	s, seedeaters and relatives	
74	Yellow-fronted Canary	Crithagra mozambica	

Appendix 3.2 Birds species and their abundance recorded in Kaya Kauma Forest in November, 2018.

No.	Common Name	Scientific Name	24	25	26	27	28	Total
	Numididae: guineafowl							
1	Helmeted Guineafowl	Numida meleagris	1	0	0	0	0	1
	Phasianidae: quails, francolins, spurfowl and allies							
2	Crested Francolin	Francolinus sephaena	3	1	0	1	1	6
	Ciconiidae: storks							
3	Woolly-necked Stork	Ciconia episcopus	0	1	0	0	0	1
	Threskiornithidae: ibises and spoonbills							
4	Hadada Ibis	Bostrychia hagedash	1	0	0	0	1	2
	Ardeidae: herons, egrets and bitterns							
5	Black-headed Heron	Ardea melanocephala	1	0	0	0	0	1
	Accipitridae: diurnal birds of prey other than falcons							
6	Southern Banded Snake Eagle	Circaetus fasciolatus	1	0	1	0	0	2
7	African Goshawk	Haliaeetus vocifer	0	1	0	0	0	1
8	Great Sparrowhawk	Accipiter melanoleucus	1	0	0	0	0	1
9	Lizard Buzzard	Kaupifalco monogrammicus	0	0	0	0	1	1

10	Wahlberg's Eagle	Aquila wahlbergi	0	1	0	0	0	1
	Columbidae: pigeons and doves							
11	Red-eyed Dove	Streptopelia semitorquata	2	1	0	1	1	5
12	Ring-necked Dove	Streptopelia capicola	2	1	1	0	1	5
13	Emerald-spotted Wood Dove	Turtur chalcospilos	3	1	2	2	1	9
14	Tambourine Dove	Turtur tympanistria	3	2	0	0	1	6
15	African Green Pigeon	Treron calvus	1	0	0	0	0	1
	Psittacidae: lovebirds and parrots							
16	Brown-headed Parrot	Poicephalus cryptoxanthus	2	1	1	1	0	5
	Musophagidae: turacos							
17	Fischer's Turaco	Tauraco fischeri	2	2	0	2	1	7
-	Cuculidae: cuckoos and coucals							
18	Jacobin Cuckoo	Clamator jacobinus	0	0	0	1	0	1
19	Thick-billed Cuckoo	Pachycoccyx audeberti	1	1	0	0	0	2
20	Klaas's Cuckoo	Chrysococcyx klaas	0	1	0	0	0	1
21	Yellowbill	Ceuthmochares aereus	0	0	1	0	1	2
22	White-browed Coucal	Centropus superciliosus	3	2	0	0	1	6
	Strigidae: typical owls							
23	Verreaux's Eagle Owl	Bubo lacteus	0	0	1	0	0	1
24	African Wood Owl	Strix woodfordii	0	0	1	0	0	1
-	Apodidae: Swifts							
25	African Palm Swift	Cypsiurus parvus	2	2	0	2	1	7
26	Little Swift	Apus affinis	1	0	0	0	0	1
	Coliidae: mousebirds							
27	Speckled Mousebird	Colius striatus	1	3	1	1	0	6
	Coraciidae: rollers							
28	Lilac-breasted Roller	Coracias caudatus	1	1	0	0	1	3
29	Broad-billed Roller	Eurystomus glaucurus	1	1	0	0	0	2
	Meropidae: bee-eaters							
30	White-throated Bee-eater	Merops albicollis	0	1	1	0	1	3
31	Eurasian Bee-eater	Merops apiaster	0	1	0	0	0	1
32	Northern Carmine Bee-eater	Merops nubicus	1	0	0	0	0	1

	Phoeniculidae: wood-hoopoes							
33	Green Wood-hoopoe	Phoeniculus purpureus	1	1	1	0	0	3
	Bucerotidae: hornbills							
34	Crowned Hornbill	Tockus alboterminatus	0	1	0	1	0	2
35	Trumpeter Hornbill	Bycanistes bucanitor	1	1	0	0	1	3
	Capitonidae: barbets and tinkerbirds							
36	Red-fronted Tinkerbird	Pogoniulus pusillus	1	2	0	1	1	5
	Indicatoridae: honeyguides							
37	Greater Honeyguide	Indicator indicator	2	1	0	0	1	4
	Picidae: wrynecks and woodpeckers							
38	Mombasa Woodpecker	Campethera mombassica	2	0	1	0	1	4
	Malaconotidae: helmetshrikes, bus puffbacks	hshrikes, tchagras and						
39	Retz's Helmetshrike	Prionops retzii	0	0	1	0	1	2
40	Grey-headed Bushshrike	Malaconotus blanchoti	1	0	1	0	0	2
41	Gorgeous Bushshrike	Chlorophoneus viridis	0	1	0	2	1	4
42	Black-crowned Tchagra	Tchagra senegalus	1	0	2	0	1	4
43	Black-backed Puffback	Dryoscopus cubla	1	1	0	0	1	3
44	Tropical Boubou	Laniarius aethopicus	6	3	3	5	1	18
	Oriolidae: orioles							
45	Eurasian Golden Oriole	Oriolus oriolus	1	2	0	0	1	4
46	Black-headed Oriole	Oriolus larvatus	2	2	0	0	1	5
	Dicruridae: drongos							
47	Common Drongo	Dicrurus adsimilis	2	0	2	2	0	6
	Corvidae: crows and allies							
48	House Crow	Corvus splendens	1	3	1	1	1	7
	Hirundinidae: saw-wings, swallow	s and martins						
49	Lesser Striped Swallow	Cecropis abyssinica	1	0	0	0	0	1
	Cisticolidae: cisticolas and allies							
50	Tawny-flanked Prinia	Prinia subflava	0	0	0	0	1	1
51	Black-headed Apalis	Apalis melanocephala	0	0	0	2	1	3
52	Grey-backed Camaroptera	Camaroptera brachyura	3	3	0	4	0	10
	Pycnonotidae: bulbuls							

53	Common Bulbul	Pycnonotus barbatus	2	3	2	2	0	9
		-		_				-
54	Zanzibar Greenbul	Andropadus importunus	3	3	3	4	0	13
55	Yellow-bellied Greenbul	Chlorocichla flaviventris	3	0	2	3	0	8
56	Northern Brownbul	Phyllastrephus strepitans	2	2	3	2	1	10
57	Eastern Nicator	Nicator gularis	4	3	1	2	1	11
	Timaliidae: illadopses, babblers and	chatterers						
58	Scaly Babbler	Turdoides squamulata	1	2	0	0	0	3
	Sturnidae: starlings and oxpeckers							
59	Black-bellied Starling	Lamprotornis corruscus	2	2	3	2	1	10
	Muscicapidae: chats, wheatears and	Old World flycatchers						
60	African Bare-eyed Thrush	Turdus tephronotus	1	1	0	0	0	2
61	White-browed Robin Chat	Cossypha heuglini	2	1	0	0	0	3
62	Red-capped Robin Chat	Cossypha natalensis	0	0	0	2	0	2
63	Bearded Scrub Robin	Cercotrichas	4	2	1	1	1	9
64	Spotted Flycatcher	quadrivirgata Muscicapa striata	0	1	0	0	0	1
	Nectariniidae: sunbirds							
65	Collared Sunbird	Hedydipna collaris	1	1	1	2	0	5
66	Olive Sunbird	Cyanomitra olivacea	3	1	0	0	1	5
	Passeridae: sparrow weavers, Old V	as						
67	Grey-headed Sparrow	Passer griseus	0	1	0	0	1	2
	Ploceidae: weavers, bishops and wid	lowbirds						
68	Grosbeak Weaver	Amblyospiza albifrons	1	0	0	0	1	2
69	Dark-backed Weaver	Ploceus bicolor	2	0	0	0	0	2
	Estrildidae: waxbills							
70	Red-cheeked Cordon-bleu	Uraeginthus bengalus	1	0	0	0	1	2
71	Peters's Twinspot	Hypargos niveoguttatus	0	0	0	1	1	2
72	Bronze Mannikin	Spermestes cucculatus	0	0	1	0	0	1
	Motacillidae: wagtails, longclaws and pipits		Ŭ	Ŭ	-	~	Ŭ	-
73	African Pied Wagtail	Motacilla aguimp	0	1	0	0	0	1
. 0	Fringillidae: canaries, citrils, seedea		Ŭ		Ŭ	~	Ŭ	
74	Yellow-fronted Canary	Crithagra mozambica	0	1	1	0	1	3
74	renow-nomeu Callal y		U	1	1	U	1	3

CHAPTER FOUR:

SMALL MAMMAL SURVEY IN THE KAYA KAUMA FOREST, KILIFI COUNTY

Aziza Zuhura: Mammalogy section, Zoology Department, National Museums of Kenya, P.O. Box 40658 00100 GPO Nairobi. Email- azizazuhura@yahoo.com

4.1 Introduction

The coastal forests in Kenya, were once probably a contiguous ecosystem, which extended from Lamu in the North to Lungalunga in the South. Currently these forests exist as small isolated patches of forest in the midst of rapidly increasing human population, fragmented by wood carving, firewood collection, charcoal burning, timber and poles extraction, encroachment for settlement and agriculture (Burgess, et al., 1988; Burgess, et al., 2000; Burgess, et al., 2013; Hamilton, 1981; Howell, 1981). Some of the remaining costal natural forests include the Kayas. A Kaya is a Mijikenda word for homestead; which was a fortified village in the past built in the forest, and used by locals as hideouts from external attack by armed tribes from Somali origin (Spear, 1978). However, when Kenya gained independence in 1963, Kaya forests were converted to sacred sites for conducting cultural ceremonies by Mijikendas (Spear, 1978; Waiyaki, 1995). The extraction of forest products in the Kayas in the past was regulated by council of elders by issuance of permits, but this traditional method of forest protection has broken down (Waiyaki, 1995; Ng'weno, et al., 2004; Musila, et al., 2005). Some Kaya forests (Kayas; Giriama, Kinondo, Jibana, Kambe, Ribe, Rabai (includes Mudzimuvya and Bomu/Fimboni), Duruma (includes Gandini and Mtswakara) are internationally recognized as World Heritage Sites (NMK, 2008). Although the remaining coastal forests, Kayas included are highly threatened, they have been shown to hold diverse and unique flora and fauna, which led to the listing of most of these forest patches as Key Biodiversity Areas (KBAs (Langhammer, et al., 2007) within the Coastal Forests of Eastern Africa Hotspot (Burgess, et al., 2003). However, limited if any research has been in the remaining Kenyas Kayas, and thus the need for improved scientific understanding of both flora and fauna, as well exploitation by local people.

Main goal

The main goal of this exercise was to document diversity of mammal species found in and around Kaya Kauma.

Specific objectives were,

- 1. Document the mammal species found in Kaya Kauma and its surrounding areas
- Collection some museums specimens to deposit at the Mammalogy Section-National Museums of Kenya
- 3. Provide recommendations for improved conservation of Kaya Kauma and her mammal biodiversity

4.2. Material and methods

Study Area

The study was undertaken in and around Kaya Kauma forest in between 21st 27th November 2018, towards the start of the dry season. The Kaya is found in Ganze, Kilifi County five kilomters from the Jaribuni town centre (latitude -3.6167, longitude 39.7333). The size of Kaya gazetted by Government of Kenya in 1997, is is about 78 acres in size. The vegetation of the Kaya consists of a broadleaved mature forest around the top of a small hill, as well as some large indigenous trees, and also some open areas which are maintained by clearance of grass and bushes. A big seasonal river (Rive Nzovuni) flows near the Kaya.

Figure 15 The farmland in Jaribuni village where we trapped rodents.

Capture methods

Small mammals were captured using 20 Sherman's traps live-trap 7.5 X 9.0 X 23.0 cm, HB Sherman Trap Inc, Tallahassee, USA) Odhiambo, *et al.* 2005; Monadjem *et al.* 2011), and 20 wooden snaps (Fig 4) kill traps (Stanley and Kihaule, 2016). The traps were set at intervals of 5-10m from each other The Sherman's traps were baited with oats flakes, while the snap traps were baited with a single raw peanut seed. The traps were checked once in the morning (8-9 am), then re-baited and left in their original position and checked again the following days. Other specimens captured in pitfall traps of herpetologist research were also handed over to mammal team. Mistnets were also used to capture bats (fig. 16). The nets were operated for two hours (1900-2100 pm) for two nights in one area and then moved to a new location. All animals captured in the traps were removed, put in cloth bags and killed with chloroform, identified and processed for biometric data. Measurements were taken on each individual and included; **TL** (tail length), **HB** (length of head and body, **HF** (length of hind foot), **EL** (length of left ear), **WT-** weight (mass of the individuals). All trapped rodents were identified to Genera or species using Kingdon (2015). Vouchers of wet specimens collected were deposited with Mammalogy Section-National Museums of Kenya, Nairobi), and preserved by opening the stomach of the the specimen and dipping the whole

specimens in 70% alcohol solution. Stuffed skins were also prepared through the process of taxidermy, dried then disinfected and stored in the collection cabinets (fig. 21).

Figure 16 The author and community member Mzee Hillary putting up mist net in front of Kaya Kauma entrance foot path and setting traps at Jaribuni village.

4.3 Results

A total of 52 individuals (of ten species) of sighting and collections of mammals were recorded during this survey, including 19 captured in traps and 33 that were observed opportunistically (table 2). Species accumulation curves showed how many new species were added each new sampling day. The Jacknife 1 species estimator was higher than the mean observed species (Fig. 17) and neither of the two curves reached asymptote indicating that sampling of mammals in Kaya Kauma and its surroundings is far from complete. A troop of Papio cynocephalus (Linnaeus, 1766) Yellow Baboon were seen during this survey and some *Cercopithecus mitis albotorquatus* Pousargues, 1896, Pousargues's Monkey made calls in the morning and some records were received from local people. Individuals of Chlorocebus pygerythrus (F. Cuvier, 1821) Vervet Monkey were seen raiding mango fruits from trees in Kaya Kauma and groups of more than ten individuals were seen in a farm planted with pawpaws. Three shrews (*Crocidura* species) were captured in a herpetology pitfall trap and a Lepus capensis Linnaeus, 1758 Cape Hare was seen in community areas around the Kaya. Several (8) Nesotragus moschatus Von Dueben, 1846 Suni scats were seen while setting traps inside the Kaya.

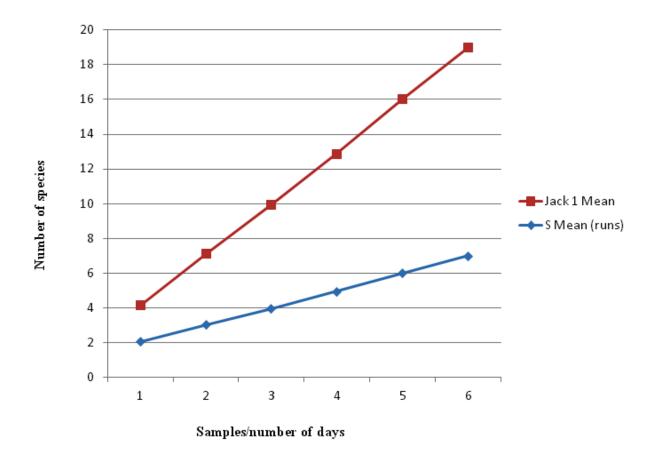


Figure 17 Species accumulation curve for the six sampling days showing observed species and Jacknife 1 species richness estimator.

Figure 18 A rodent captured in a pit-fall trap run by herpetologist colleagues.

Figure 19 Left, bat and rodent specimens ready to be skinned and. Right, portrait of a horseshoe bat.

Figure 20 One of the community elders Mzee Hillary with a bat at Kaya Kauma

	Order and Species	Methods of capture	Number captured/recorded
	ORDER PRIMATES (Monkeys)		
1	<i>Chlorocebus pygerythrus</i> (F. Cuvier, 1821) Vervet Monkey	opportunistic	10
2	Cercopithecus mitis albotorquatus Pousargues, 1896, Pousargues's Monkey	opportunistic	15
	ORDER RODENTIA (Rodents)		
3	Genus Mastomys sp.	snap kill trap	4
	ORDER CHIROPTERA (Bats)		
4	<i>Epomophorus wahlbergi</i> (Sundevall, 1846). Wahlberg's Epauletted Fruit Bat	mist net	4
5	Genus Rhinolophus hildebrandtii	mist net	2
6	Genus Miniopterus (Long-fingered Bats)	mist net	2
	ORDER SORICOMORPHA (Forest shrews)		
7	Genus Crocidura sp. White-toothed shrews	snap kill trap and bucket pitfaa	7
8	ORDER CETARTIODACTYLA (Even-toed Ungulates, Whales and Dolphins)		
9	Nesotragus moschatus Von Dueben, 1846 Suni	Scat/indirect method	8
	TOTAL		52

Table 1 Mammal species and the methods used to record their presence.

Figure 21 Small mammal specimens skinned (a) and remains preserved as wet collection (b), and deposited at Mammalogy section- National Museums of Kenya, Nairobi.

4.4. Discussion and recommendations

Although the size of the area of Kaya Kauma is 78 acres, we found a number of small and large mammals in the Kaya. Some relatively large mammals several species occurred in the area,

including three species of monkey. Bats, especially *Epomophorus wahlbergi*, were common, and the males were heard each night especially past 8 pm, singing from tall trees. Fruit bats are relatively easy to capture in mist nets, compared to insectivorous bats, which may be the reason why four individuals were captured the first night. Other species of fruits bats may have existed in and outside the station but may have remained unrecorded. Only two individuals of insectivorous bat species were captured in mist nets. Some species of insectivorous bats have the ability to detect the presence of nets and avoid them (MacSwiney et al. 2008), suggesting that many other species of bat may have existed in Kaya Kauma, but which we were unable to record.

Few individuals of rodent species were captured in our survey, although the ground was well covered in grass and weeds, providing a suitable habitat for survival and predator avoidance. Hence, it is unclear why so few individuals were captured despite the large number of traps (40) used. Before the slight rain received in the area during the survey, there was a long dry period, which may have reduced populations of rodents and shrews to low levels. In addition, since this survey was very short, confined to only three days in the dry season, there is a need to conduct the same survey during the wet season, in order to improve our understanding about the species found in and around Kaya Kauma. Kaya Kauma may not have many large mammals, because of its small size, but there may be many small ones, such as bats, rodents and shrews. Large mammals, which possibly existed in the past, may have been depleted by hunting by local people. Kaya Kauma was was an island in the midst of human-dominated landscape, and was being exploited by local people mainly for firewood, grazing and extraction of building poles. The following is recommended for improved conservation of forest habitat and species found in the Kaya;

- 1. The boundaries of the Kaya should be well marked and increased patrolling done to control for community encroachment and unsustainable forest exploitation
- National and County Governments should work with local people to develop an alternative forms of livelihood which can increase income generation to reduce dependence on the exploitation of the Kaya resources
- Construct a community museum in the area to promote the conservation of cultural traditions of the Mijikenda sub-tribe of the area and promote the continuous use of the Kaya Kauma for traditional ceremonies

4.5 References

- Burgess, N. D., M. Nummelin, J. Fjeldsa, K. M Howell, K. Lukumbyzya, L.Mhando, P. Phillipson & E. Vanden Berge (eds) (1988a). Biodiversity and Conservation of the Eastern Arc Mountains of Tanzania and Kenya. *Journal of East African Natural History* 87: 367.
- Burgess, N. D. & G. P. Clarke. (eds) (2000). *The Coastal Forests of Eastern Africa*. IUCN. Cambridge and Gland.
- Burgess, N. D, T. Butynski, I. Gordon, P. Sumbi, Q. Luke & J. Watkin (2003). East Arc Mountains and Coastal Forest of Tanzania and Kenya Biodiversity Hotspots. Conservation International. Washington DC.
- Hamilton, A. C. (1981). *The Quaternary History of African Forests: Its Relevance to Conservation*. Cambridge: ICBP. pp 85.
- Howel, K. M. (1981). Pugu Forest Reserve: Biological Values and Development. *Afr. Jou. Ecol.* 19, 73-81.
- Kingdon J (2015). Kingdon field guide to African mammals 2nd edition. Bloomsburg publishing. London-UK.
- Langhammer, P. F, Bakarr, M. I., Bennun, L. A, Brooks, T. M., Clay, R. P., Darwall, W., De Silva, N., Edgar, G. J., Eken, G., Fishpool, L. D.C, Da Fonseca, G. A.B., Foster, M. N., Knox, D. H. Matiku, P., Radford, E. A., Rodrigues, A. S. L., Salaman, P, Sechrest, W. and ordoff, A. (2007). *Identification and Gap Analysis of Key Biodiversity Areas-Targets for Comprehensive Protected Area Systems*. IUCN The World Conservation Union Series No. 15. UK.
- MacSwiney, G., M. Cristina, F.M. Clarke and P.A. Racey. 2008. What you see is not what you get: the role of ultrasonic detectors in increasing inventory completeness in Neotropical bat assemblages. J. Appl. Ecol. 45: 1364-1371.
- Monadjem, A., Mahlaba, T. A., Dlamini, N., Eiseb, S. J., Belmain, S. R., Mulungu, L. S., Masssawe, A. W., Makundi, R. H., Mohr, K. and Taylor, T. (2011). Impact of crop cycle on movement patterns of pest rodent species between fields and houses in Africa. *Wildlife Research* 38: 603–609 http://dx.doi.org/10.1071/WR10130.

- Musila, S. N., F. Ng'weno, P. Matiku, L. Bennun, E. Kanyanya, R. Mulwa, M. Mwema, A. Kiragu,
 J. Siele, J. Musina, P. Buckley, J. Machekele & S. Njehia, (eds) (2005). *Important Bird Areas (IBAs) Status and Trends Report 2005*. Unpublished Report. Nature Kenya.
 Nairobi.
- Ng'weno, F., Otieno, N and Matiku, P. (eds (2004). *Important Bird Areas Status and Trends* 2004. Unpublished Report. Nairobi: Nature Kenya. pp 56.
- NMK (2008). Nomination dossier for inscription on the World Heritage List of the Sacred Mijikenda Kaya Forests, Kenya-January 2008. National Museums of Kenya. Nairobi.
- Odhiambo, R., Makundi, R., Leirs, H., and Verhagen, R. (2005). Community structure and seasonal abundance of rodents of maize farms in Southwestern Tanzania. *Belg. J. Zool*.135: 113-118.
- Spear, T. T. (1978). The Kaya Complex. Nairobi. Kenya Literature Bureau. pp 37.
- Stanley WT, Kihaule PM (2016) Elevational Distribution and Ecology of Small Mammals on Tanzania's Second Highest Mountain. PLoS ONE 11(9): e0162009. <u>https://doi.org/10.1371/journal.pone.0162009</u>
- Waiyaki, E. (1995). Effects of Forest Fragmentation, Isolation, and Structure on the Richness and Abundance of Bird Communities in Major Coastal Forests of South coast, Kenya.
 Unpublished MSc. Thesis, university Kent at Canterbury.

CHAPTER FIVE:

AMPHIBIANS AND REPTILES SURVEY IN THE KAYA KAUMA FOREST, KILIFI COUNTY

Beryl A. Bwong

Herpetology Section, Zoology Department National Museums of Kenya, P.O. Box, 40658, 00100 Nairobi; Email address: akothbwong@gmail.com

5.1 Summary

We report on a rapid survey of amphibians and reptiles (herpetofauna) carried out in Kaya Kauma forest in Kilifi County from 21st -26th of November 2018. A total of 23 species comprising of 5 amphibians and 18 reptile species were recorded to occur in Kaya Kauma and its surroundings. Diversity of herpetofauna in Kaya Kauma is compared with neighbouring Kaya Jibana and in addition a brief species account is provided. We make recommendations on possible non consumptive utilization of herpetofauna in Kaya Kauma as a way to motivate the continued conservation of the Kaya. The current study is preliminary given that the survey period was short and conducted only in one season. As indicated by the species accumulation curves, more species can be discovered with more sampling effort. We therefore recommend more studies covering longer sampling period in both wet and dry periods.

5.2 Introduction

The coastal forests of Kenya and Tanzania are recognized as an area of global biodiversity importance and are considered as one of the 25 world's biodiversity hotspots due to the concentration of many narrowly endemic plants and animal species in exceptionally small areas (Burges, 1998; Meyers et al., 2000; Mittermier et al., 2004). Within the coastal forests in Kenya are the Kaya forests that are a relict forest patches protected by the traditions of the nine MijiKenda ethnic groups who regard them as sacred places and burial grounds (Nyamwero et al., 2008; http://www.museums.or.ke/sacred-mijikenda-kaya-forests/). The Kayas constitute some of the few patches of undisturbed vegetation of a once extensive and diverse lowland forest of Zanzibar-

Inhambane Regional Mosaic (White, 1983). Access to the Kaya forests and activity within them has been kept minimal leaving the forests as "intact islands" preserving considerable biodiversity despite their small sizes (Githitho, 2008).

The Kaya forests are botanically diverse and have high conservation value. More than half of the Kenya's rare plants are found in the coast region, many within the Kaya Forests (Younge et al, 2002). However, biodiversity studies on other taxa within these forests have remained unstudied until recently. For example, herpetological surveys within the Kaya forests only began in 2009 (Malonza &Nyamache, 2010) when Kaya Mrima, Kinondo and Jibana were visited. In addition, Malonza et al., 2016 surveyed additional 9 Kaya forests in Kwale County. However, a lot still remains to be done as far as herepetological surveys in the entire coastal forests are concerned; For example, gaps regarding fussorial herpetofauna of most forests still exist and new records emerge even in some forests considered to be well studied such as Tana River forests and Shimba hills National reserve (Malonza *et al.*, 2006; Malonza & Measey 2005, Bwong *et al.*, 2017). In addition, conservation status of endemic and/or rare herpetofauna remains unknown for most areas.

Conservation of the coastal forests including the sacred Kaya forests is becoming a big challenge given their location in the centre of the country's tourism industry. The rising need for land for, infrastructure, agriculture, fishing, mining (iron ore and titanium) logging for timber, woodcarving and the rapid socio-cultural changes continue to be major threats leading to the loss of smaller Kayas and groves (Younge *et al*, 2002; Nyamwero et al, 2008; Tabor *et al*., 2010). Considering the magnitude of these threats, efforts should be made to conserve them. One such initiative is the sustainable utilization of these forests by the local community. For this to be realized however there is a need to conduct comprehensive surveys of all the biodiversity found in these forests and document their diversity, conservation status and economic values as a baseline to such initiatives. The current study aimed at documenting the diversity of amphibians and reptiles in Kaya Kauma located in Kwale County, in order to shed more light on significance of this Kaya in herpetofauna conservation and their possible non-consumptive utilization. A combination of ecological census techniques following Karns, 1986; Heyer et al, 1996; Sutherland, 1996 was employed to document the diversity and distribution of amphibians and reptiles.

5.3 Materials and methods *Study area*

Kaya Kauma is located in Jaribuni Location, in Kilifi County in the north coast between S03°37'14" and E39°44'10". This is mostly woodland consisting of low hills commonly know as foot plateau west of the coastal range (Githitho, 2008; http://www.museums.or.ke/sacred-mijikenda-kaya-forests). The forest is bordered by Nzovuni River to the west.

Sampling methods

Field study was conducted for five days from 21st-26th November 2018. The forest was relatively dry during the sampling period however a few drizzling episodes were experienced. Three transects were randomly selected to represent the major habitats; forest, forest edge and farmlands (Figs. 22 a-c). The following sampling methods were used in all the study sites to collect data on the diversity and distribution of herpetofauna in Kaya Kauma and its environs.

Figure 22 Kaya Kauma forest (a), Kaya Kauma forest edge (b) and farmlands

Time limited Survey (TLS)

This involved two observers searching the study sites for two to three hours per day divided into blocks of 30 minutes each (Heyer *et al.*, 1994; Sutherland, 1996; Rödel & Ernst, 2004). All possible amphibian and reptiles' micro-habitats such as; under stones, decomposing logs, tree stumps, bushes were searched. Digging within loose soils for burrowing species was also done. Sampling was done mainly in the morning session when most reptiles are most active basking, resting or foraging and also at night targeting nocturnal species. Night sampling was conducted for 4 nights beginning 1800hrs to 2000hrs.

Pitfall traps with drift fences

Pitfall traps with X-shaped drift fence (Fig. 23), a modification of that used by Corn (1994), with segments of 5 m length were also set up in each study site. The pitfall traps were made using 10 litre plastic buckets placed flush with the ground. The drift fence consisted of a transparent plastic sheeting 0.5 m high stapled on wooden pegs. The lower end of the fence was buried in the ground and positioned to run across the buckets. A trap station consisting of five buckets was set up in each site; trap station I was set within the forest (S03°37.517′ and E039°44.292′); station II was set on the forest edge (S03°37.339′ and E039°44.292′) while station III were set on a fallow farmland (S03°37.055′ and E039°43.971′). Pit fall trapping with drift fences was mainly used to capture species which may not be captured through other methods. Traps were left for 5 trap nights at each site and checked once on a daily basis.

Figure 23 Pitfall traps with transparent drift fence sampling technique

All amphibians and reptiles found were recorded and where possible the following data taken, species, sex, longitude and latitude positions, microhabitat and a photograph. A representative number of amphibians and reptiles were collected, euthanized in a humane manner according to standard protocols as outlined by Karns (1986). Amphibian specimens were euthanized with MS222 and reptiles with pentobarbital solution and then fixed in 10% formaldehyde, preserved and later deposited at the Herpetological collection at the National Museums of Kenya. Specimens were identified using published taxonomic keys, Channing & Howell, 2006 and Frost *et al.*, 2006 for amphibians and Spawls *et al.*, 2018 for reptiles.

Interviews with local community

Given that some reptiles (especially snakes and chameleons) are quite cryptic and secretive, rapid surveys like the one performed during the current study often fail to record even the most common species. Therefore, we also interviewed a few members of the local community we interacted with during the survey such as field assistants and farmers. The interviewees were asked to describe the herpetofauna they encounter within the area and then description confirmed by photos from the field guides (Spawls, *et al.*, 2006). We only listed those species that were positively identified in the field guide.

Species richness analysis

The observed species richness was estimated using the Estimate SWin10 program (Colwell, 2013). Jacknife 1 species richness estimator was compared with observed species richness (*Sobs*). Species accumulation curves were calculated and generated using the software programme EstimateS using 1000 randomizations. The species richness was plotted as a function of the accumulated number of samples (number of sampling days).

Similarity comparison

Similarities of herpetofauna between Kaya Kauma and Kaya Jibana Kaya forest was calculated using Sørensen similarity index which is based on the probability that two randomly chosen individuals, one from each site, both belong to a species shared by both sites (but not necessarily to the same species). It was calculated as: $C_s = 2j/(a+b)$, where *j* equals the number of species shared between two sites, and *a* and *b* are the number of species in each site. The index ranges from 0, when adjacent communities share no species in common, to 1, when adjacent communities are identical. Kaya Jibana was chosen for this comparison because it is the only Kaya in Kilifi County where studies on herpetofauna have been conducted (Malonza & Nyamache, 2010).

5.4 Results and discussion

A total of 23 species; 5 amphibian and 18 reptile species were recorded in Kaya Kauma and its surroundings; these comprise 4 amphibian and 9 reptile families. Twenty species (5 amphibians and 15 reptiles) were recorded using both TLS and pitfall traps (Table 3) while three species (*Pythons sebae* Gmelin, 1789, *Causus resimus* (Peters 1862) and *Psamophis punctatus* Duméril & Bibron, 1854) were recorded through interviews with the local community. More species were recorded in the forest edge (16), followed by the farmland (11) and forest transect (8). A single amphibian species Guttural toad (*Sclerophrys gutturalis* (Power, 1927)) (Fig. 3) was recorded in the forest transect. The remaining amphibians were recorded on the forest edge (5) and farmland (3) respectively.

SPECIES	Forest transect	Forest edge transect	Farmland transect
Amphibians			
Sclerophrys gutturalis	1	1	1
Phrynobatrachus acridoides	0	1	1

Table 2 List of amphibians recorded during the three study sites

Ptychadena anchietae	0	1	1	
Hyperolius argus	0	1	0	
Hyperolius tuberilinguis	0	1	0	
Total	1	5	3	
Reptiles				
Chamaleo dilepis	0	0	1	
Heliobolus spekii	0	1	1	
Lygodactilus mombasica	1	1	1	
Hemidactylus barbouri	1	1	0	
Hemidactylus platycephalus	1	1	1	
Hemidactylus angulatus	0	1	1	
Trachylepis maculilabris	0	1	0	
Trachylepis planifrons	1	1	1	
Broadleysaurus major	1	0	0	
Varanus niloticus	0	1	0	
Cordylus tropidosternum	1	0	0	
Philothamnus hoplogaster	0	1	0	
Psamophis biseriatus	1	0	1	
Psamophis orientalis	0	1	1	
Hemirhageris hildebrandtia	0	1	0	
Total	8	16	11	

Coast Puddle frog (*Phrynobatrachus acridoides* (Cope, 1867)) and Savannah Ridged frog (*Ptychadena anchietae* (Bocage, 1867)) were abundant wherever they occurred however only 3 Guttural toads were recorded during the study period. In addition, the two frogs (Coast puddle frog and Savanna ridged frog) were recorded both during the day and at night while Guttutral toad was only recorded at night. The two reed frogs *Hyperolius argus* Peters, 1854 and *H. tuberilinguis* Smith, 1849 were identified by the male advertisement calls. The two species were calling in aquatic vegetation during the night however the calling site was inaccessible. The most commonly encountered reptiles were the Mombasa dwarf Gecko (*Lygodactylus mombasicus* Loveridge, 1935) and Speke's sand lizard (*Heliobolus spekii* Günther, 1872) (Fig. 24b and 24e). Both species were recorded in all the three study sites during the day. At night however it was Barbour's Gecko (*Hemidactylus barbouri* Loveridge, 1942) that was common along the path both in the forest and at the forest edge. Snakes were all recorded during the Time-limited searches.

In terms of sampling methods only two specimens of Speke's Sand Lizard were recorded using pitfall traps. The two were recorded in trap station III in the farmlands. Even though no amphibians

or reptiles were recorded in traps I and II several invertebrates (all the three trap stations) and rodents (traps II and III) were recorded.

Fig.24a

24c

Fig.24b

Figure 24 Scherophrys gatturalis (24a), Ptychadena anchietae (24b), Female Phrynobatrachus acridoides (24c), Male P. acridoides (24d)

Fig.25a

Fig.25b

Fig.25c

Fig.25d

Fig.25e

Fig.25f

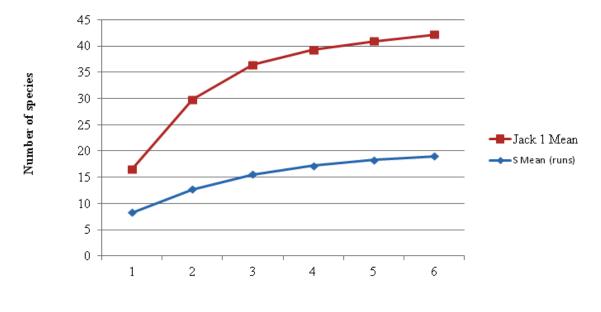


Fig. 25g

Figure 25 Trachylepis planifrons (24a), Lygodactylus mombasicus (24b), Chamaeleo dilepis (24c), Hemidactylus plqtycephalus (24d), Heliobolus spekii (24e), Hemirrhagaris hilderbrandtia (24f), Psamophis biseriatus (24g)

Species richness

Species accumulation curves showed how many new species were added each new sampling day. The Jacknife 1 species estimator was higher than the mean observed species (Fig. 26) and neither of the two curves reached asymptote indicating that sampling of amphibians and reptiles in Kaya Kauma and its surroundings is far from complete. Kaya Kauma and its surrounding is a suitable habitat for many amphibians and reptiles species that have been recorded in neighbouring areas such as Arabuko Sokoke forest, Gedi forest and Kaya Jibana (Drewes, 1992; Chira, 1993; Malonza & Nyamache, 2010). For example, amphibians such as Boulengerula changamwensis, Arthroleptis stenodactylus, A. xenodactyloides, Mertenosphryne micranotis and coastal Hyperoliid species most of which are explosive breeders targeting the beginning of the rainy season may be recorded in favourable seasons. Reptile species with coastal affiliation such as the Hemidactylus mrimaenesis, Nucras boulengeri, Dendroaspis anguticeps, Thelotornis mossambicanus and burrowing species like Melanosep ssp. should be present in Kaya Kauma. In addition, a single specimen of the rare Broadley's dwarf Gecko (Lygodactylus broadleyi) was recorded in Pwani University during the current study period and given its range along the coast, this species should also be present in Kaya Kauma. More sampling therefore is needed to document the full diversity of amphibians and reptiles in Kaya Kauma.

Samples/number of days

Figure 26 Species accumulation curve for the six sampling days showing observed species and Jacknife 1 species richness estimator.

Similarity comparison

A total of 24 amphibians and reptiles have been recorded from Kaya Jibana (Malonza & Nyamache 2010) comprising of 11 amphibians and 13 reptiles. Both Kaya Kauma and Jibana share 3 amphibian and eight reptile species. However, the two Kaya have a similarity index of just 50% even though the forests are within the same County. This can be explained by differences in sampling efforts between the two Kayas. The relatively high number of reptile species recorded in Kaya Kauma despite its small size compared to Kaya Jibana and also sampling efforts difference, points to the significance of Kaya Kauma as a herpetofauna refuge in the area which is rapidly being converted to agricultural land.

Species account

The species account presented below consists of species recorded during the survey plus those obtained through interviews with local community. The account entries consist of: *Species name* which comprise both scientific and common names; *Distribution*: mentions the exact locality

within where the species was been recorded. *Habitat*: describes the general habitat in which the species occurs.

Amphibians

Family Bufonidae

Sclerophrys gutturalis (Power, 1927) Guttural Toad

Habitat: Savannah, grassland and agricultural area.

Distribution: Two samples were collected within the forest (S03°37.517′ and E039°44.292′) while the third one was recorded in the farmland at Mhoni Village.

Phrynobatrachidae

Phrynobatrachus acridoides (Cope, 1867) Coast Puddle Frog

Habitat: dry and humid savannah, shrub land, grassland and coastal habitat.

Distribution: Samples were collected along River Nzovuni site one near the forest edge (S03°37.339′ and E039° 43.971′) and the second site was in Mhoni village in the farmland (S03°36.818 ′and E039°44.266′). Additional two samples were collected in a water puddle near a broken water pipe in the forest.

Ptychadenidae

Ptychadena anchietae (Bocage, 1868) Savannah Ridged Frog

Habitat: woodland, Savannah, residential and agricultural areas.

Distribution: Samples were collected along River Nzovuni site one near the forest edge (S03°37.339′ and E039° 43.971′) and the second site was in Mhoni village in the farmland (S03°36.818 ′and E039°44.266′).

Hyperoliidae;

Hyperolius argus Peters, 1854 Argus Reed Frog

Habitat: Moist coastal savannah mainly in open areas.

Distribution: Several individuals were heard calling in papyrus vegetation by Nzovuni River (S03°37.339′ and E039° 43.971). However due to inaccessibility of the area, none was collected.

Hyperolius tuberilinguis Smith, 1849: Tinker Reed Frog

Habitat Dry and moist savannah areas of the coast

Distribution: Several individuals were heard calling in papyrus vegetation by Nzovuni River (S03°37.339′ and E039° 43.971). However due to inaccessibility of the area, none was collected.

Reptiles

Geckonidae

Hemidactylus barbouri Loveridge, 1942 Barbour's Gecko

Habits: Terrestrial, nocturnal, and solitary. Found under piles of debris, palm fronds

Distribution: These were mainly found on the ground within the forest and also along the forest edge.

Hemidactylus angulatus Hallowell, 1852 Angulate Gecko; East African House Gecko

Habitat: Wide-spread in dry and moist savannah habitats and even inhabit buildings

Distribution: One sample was collected at the edge of Kaya Kauma (S03°37.529' and E039° 44.018') while the second one was collected in Mhoni village not far from River Nzovuni (S03°36.818' and E039°44.266').

Hemidactylus platycephalus Peters, 1845 Baobab Gecko

Habitat: Widespread and common in moist and dry habitats.

Distribution: Was recorded within the forest, on the forest edge especially on Baobab trees and also in the farmlands on Palm and mango trees.

Lygodactylus mombasicus Loveridge, 1935 White-headed dwarf Gecko; Black-and-white headed dwarf Gecko Habitat: Moist savannah and coastal mosaic vegetation

Distribution; Was recorded in the forest, forest edge and also in the farmlands where it was found on pawpaw, mango and palm trees.

Chamaeleonidae

Chamaeleo dilepis Leach, 1819 Flap-necked Chameleon

Habitat: Moist and dry savannah forest, thickets and woodland

Distribution: Two samples were recorded in the farmlands (S03°37.055' and E039°44.295') near the forest edge and another one in Mhoni village (S03°36.631' and E039°44.281')

Scincidae

Trachylepis maculilabris (Gray, 1845) **Speckle-lipped Skink** Habitat:

Distribution: These were mainly collected in the forest edge especially close to the river (S03°37.475' and E039°43.880'; S03°37.387' and E039°43.918; S03°37.339' and E039°43.971').

Trachylepis planifrons (Peters, 1878) Tree Skink

Habitat: Coastal thickets, dry and moist savannah, semi-arid areas with bushes

Distribution: This was quiet common also in all the sites mostly during the day but one was observed sleeping during night sampling. S03°37.424' and E039°43.970'; S03°36.599' and E039°44.320'; S03°37.644' and E039°44.016'; S03°37.475' and E039°43.880'; S03°36.631' and E039°44.281';

Lacertidae

Heliobolus spekii Günther, 1872 Speke's sand Lizard

Habitat: Moist and dry savannah, arid and semi-arid lands in the Acacia-Commiphora vegetation.

Distribution: These were quiet common in the forest edge and farmland but not in the forest. They were mostly seen dashing along the paths. Two specimens were collected in pitfall traps in the farmlands. Recorded at; S03°37.055' and E039°44.295'; S03°37.339 and E039°43.971'; S03°37.424' and E039°43.970'; S03°37.285' and E039°44.017'.

Cordylidae

Cordylus tropidosternum (Cope, 1869) Tropical girdled Lizard; Spiny-tailed Lizard Habitat: moist coastal forest and woodland

Distribution; A single specimen was collected on a tree trunk inside the forest (S03°37.517′ and E039°44.292′) around 0830hrs.

Gerrhosauridae

Broadleysaurus major (Duméril, 1851) Great plated Lizard

Habitat: dry and moist savannah, bushland and woodland areas

Distribution; A single specimen was recorded inside the forest on the ground (S03°37.517′ and E039°44.292′) feeding on insects around 0830hrs.

Varanidae;

Varanus niloticus (Linneaus, 1766) Nile Monitor Lizard

Habitat: Associated with permanent water bodies such as rivers, swamps, marshes, lakes, dams

Distribution: Were recorded mostly around river Nzovuni (S03°37.387' and E039°44.918') during the day.

Family Pythonidae

Python sebae (Gmelin, 1789) Central African Rock Python

Habitat: Coastal thickets, Savannah and woodland.

Distribution; Common along Nzovuni River as was reported by farmers.

Family Lamprophiidae

Psammophis punctulatus Duméril & Bibron, 1854 Speckled sand Snake Habitat: Dry savannah and semi-desert.

Distribution: Reported as common by the local field assistant though not recorded during the survey.

Psammophis biseriatus Peters, 1881 Link-marked sand Snake

Habitat: Arid and semi-arid lands, dry savannah.

Distribution: A juvenile was recorded basking a shrub on the forest transect (S03°37.539' and E039°44.214'). An adult specimen was recorded collected in Mhoni village farmlands.

Psammophis orientalis Broadley, 1977 Eastern Stripe-bellied sand Snake

Habitat: Moist coastal strip

Distribution: Three specimens were recorded (during the day) on the forest edge neighbouring Nzovuni River (S03°37.387′) and E039°43.918′). These species was also reported as common in Mhoni Village in the farmlands.

Hemirhagerrhis hildebrandtii Peter's 1878 Hildebrandt's bark Snake

Habitat: Moist and dry savanna, arid and semi-arid lands

Distribution: A single species was collected in riverrine vegetation at S03°37.517' and E039°44.292'.

Philothamnus hoplogaster (Günther, 1863) South Eastern Green snake

Habitat: Moist savannah

Distribution: One specimen was recorded basking on a tree at the forest edge (S03°37.339' and E039°43.971').

Viperidae

Causus resimus (Peters 1862) Velvety-Green Night Adder

Habitat: Coastal Savannah and thicket, savannah and woodland.

Distribution: Not collected but identified by farmers in Mhoni village.

Herpetofauna and sustainable utilization of the Kaya Kauma forest

Most amphibians and reptiles being relatively small in size and also less conspicuous unlike other higher vertebrates are rarely targeted for conservation purposes. Apart from their small size these animals are also feared by many and considered dangerous. While many people fear direct contact with amphibians and reptiles, they remain curious about them and would not mind spending money to see these animals in a snake/reptile Park. The community should be encouraged to consider non consumptive initiatives that can contribute to conservation of amphibians and reptiles in the area.

Kaya Kauma like most of the coastal forests is home to diverse amphibians and reptiles that can be displayed in a snake/reptile park to attract both local and foreign visitors. For example, a reptile/snake park can be constructed at appropriate area within Kaya Kauma where visitors can pay to visit the park and the money from the establishment can be used to improve the livelihood of the community. This way the community can learn to appreciate these animals and help in their conservation.

Establishing a snake Park in the area can also help curb cases of snakebite and related deaths in the area. Kilifi County together with other hot and wet areas in Kenya are known for relatively high numbers of snakebite and related deaths incidences. A snake Park within the areas will serve as a resource centre that can provide important information on snake bite management such as; the dangerous snakes in the area, how to avoid snakebite and on snake bite related first aid. Such information when made available in the local language can go a long way in reducing cases of snakebite and related deaths in the area.

5.5 Recommendation and conclusion

Just like in most Kayas, information on herpetofauna of Kaya Kauma is still incomplete and needs to be documented. Given that the Kaya is surrounded with various income generation activities such as agriculture, sand harvesting, etc. Kaya Kauma therefore is the only refuge for herptofauna of the surrounding area. Efforts should therefore be made to ensure that its conservation is maintained if the biodiversity it currently holds is to survive.

5.6 References

- Burgess, N.D., G.P Clarke & W.A. Rodgers (1998). Coastal forests of eastern Africa: Status, endemism patterns and their potential causes. *Biological Journal of the Linnean Society* 64: 333–367. Corn (1994),
- Bwong B.A, Nyamache J.O., Malonza P.K., Wasonga D.V., Ngwava J.M., Barratt C.D., Nagel P. & Loader S.P. 2017. Amphibian diversity in Shimba Hills National Reserve, Kenya: A comprehensive list of specimens and species. *Journal of East African Natural History*.106: 19-46
- Channing, A. & K.M. Howell (2006). *Amphibians of East Africa*. Cornell University Press, Ithaca, New York.

- Chira, M. (1993). Ecological study of herpetofauna in the Arabuko-Sokoke and Gede coastal forests of Kenya. College of Biological and Physical Sciences, University of Nairobi.Unpublished MSc thesis.
- Colwell, R.K. (2013). Estimate S: Statistical estimation of species richness and shared species from samples. Version 9. Persistent URL<purl.oclc.org/estimates>.
- Corn, P.S. (1994). Straight-line drift fences and pitfall traps. Pp 109-117 In: Heyer, W.R.,
- Drewes, R.C. (1992). Amphibian Species of the Gedi and Arabuko-Sokoke Forests, Kenya. California Academy of Sciences, California, USA. Chira, 1993;
- Frost, D.R. (2016). Amphibian Species of the World: an Online Reference. Version 6.0. [accessed on 15 March 2018]. Electronic database accessible at http://research.amnh.org/herpetology/amphibia/index.html. American Museum of Natural History, New York USA
- Githitho, A. (2008). The World Heritage Convention; Nomination Dossier for inscription on the World Heritage list; The Sacred Mijikenda Kaya Forests (KENYA)
- Heyer, W.R., M.A. Donnelly, R.W. McDiarmid, L.-A. Hayek & M.S. Foster (1994). Measuring and Monitoring Biological Diversity. Standard Methods for Amphibians.Smithsonian Institution Press, Washington, DC.
- Karns, D.R. (1986). Field Herpetology: Methods for the study of Amphibians and Reptiles in Minnesota. James Ford Bell Museum of Natural History, University of Minnesota, Occasional Paper: No. 18 September
- M.A. Donnelly, M.R.W. Diarmid, L.-A. C. Hayek, and M.S. Foster (eds.), *Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians*. Smithsonian Institution Press, Washington D.C.
- Malonza P.K. & J.O. Nyamache (2010). The role of coastal Kaya forests in sustainable biodiversity conservation and enhancement of community livelihoods: Case study of Kaya Mrima, Kinondo and Jibana herpetofauna. 20pp. Unpublished report.
- Malonza, P.K. & G.J. Measey (2005). Preliminary Survey Results on the Status of Amphibians and Reptiles of Shimba Hills National Reserve, Kenya. Unpublished report for the Kenya Wildlife Service and National Museums of Kenya, Nairobi. 22pp.

- Malonza, P.K., D.M. Mulwa & J.O. Nyamache (2016). Preliminary herpetofauna diversity in selected coastal Kaya forests and comparative other forests in Kwale County: A technical report.
- Malonza, P.K., V.D. Wasonga, V. Muchai, D. Rotich, B.A. Bwong & A.M. Bauer (2006).
 Diversity and biogeography of herpetofauna of the Tana River Primate National Reserve, Kenya. *Journal of East African Natural History* 95(2): 95–109. doi:10.2982/0012-8317(2006)95[95:DABOHO]2.0.CO;2.
- Mittermier, R.A., Gill, P.R., Hoffman, M., Pilgrim, J., Brooks, T., Mittermeier, C.G., Lamoreux,
 J. & da Fonesca, G.A.B. (2004). Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. Connex, Mexico City.
- Myers, N., R.A. Mittermeier, G.A.B. Fonseca & J. Kent (2000). Biodiversity hotspots for conservation priorities. *Nature* 403(6772): 853–58. doi:10.1038/35002501.Magurran, 1988
- Nyamweru, C., Kibet, S., Pakia, M., & Cooke, J. (2008). The Kaya forests of coastal Kenya: 'Remnant patches' or dynamic entities.
- Rödel, M-O. & R. Ernst (2004). Measuring and monitoring amphibian diversity in tropical forests. I. an evaluation of methods with recommendations for standardization. *Ecotropica* 10(1): 1–14.
- Spawls, S., K Howell, H. Hinkel. & M. Menegon (2018). A Field Guide to East African Reptiles. Bloomsbury Natural History, London Google Scholar.
- Spawls, S., K. Howell & R.C. Drewes (2006). *Reptiles and Amphibians of East Africa*. A&C Black Publishers Ltd., London
- Sutherland, W.J. (Ed.) (2006). *Ecological census techniques: a handbook*. Cambridge University Press.
- Tabor, K., N.D Burgess, B.P. Mbilinyi, J. Kashaigili & M.K. Steiniger (2010). Forest and UNESCO/AETFAT/UNSO vegetation map of Africa by F White. *Natural Resources Research Report XX, UNESCO, Paris, France.*
- White, F. (1983). The vegetation of Africa: a descriptive memoir to accompany the

- wood cover and change in Coastal Tanzania and Kenya, 1990 to 2000. *Journal of East African Natural History* **99**(1): 19–45.
- Younge, A., G. Negussie & N. Burgess (2002). Eastern Africa Coastal forest programme. Regional workshop report submitted to WW-EARPO.